<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
<th>Unterkapitel 1</th>
<th>Seite</th>
<th>Unterkapitel 2</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ambulante Physiotherapie bei stabiler COPD</td>
<td>4</td>
<td>1.1 Vorgeschichte</td>
<td>34</td>
<td>1.2 Untersuchungsbefunde</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.1 Medizinische Befunde</td>
<td>34</td>
<td>1.2.2 Physiotherapeutische Anamnese</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2.3 Körperliche Untersuchung</td>
<td>41</td>
<td>Schlussfolgerungen</td>
<td>41</td>
</tr>
<tr>
<td>1.4</td>
<td>Physiotherapeutische Zielsetzung</td>
<td>41</td>
<td>Empfehlungen für den Alltag</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Physiotherapeutische Maßnahmen</td>
<td>41</td>
<td></td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>Empfehlungen für den Alltag</td>
<td>41</td>
<td></td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Akute Exazerbation einer COPD</td>
<td>45</td>
<td>2.1 Vorgeschichte</td>
<td>45</td>
<td>2.2 Untersuchungsbefunde</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.2.1 Medizinische Befunde</td>
<td>45</td>
<td>2.2.2 Physiotherapeutische Anamnese</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.2.3 Schlussfolgerungen</td>
<td>55</td>
<td>2.4 Schlussfolgerungen</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5 Physiotherapeutische Maßnahmen</td>
<td>55</td>
<td>2.6 Empfehlungen für den Alltag</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>Physiotherapie bei Pneumonie?</td>
<td>56</td>
<td>3.1 Vorgeschichte</td>
<td>56</td>
<td>3.2 Untersuchungsbefunde</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.2.1 Medizinische Befunde</td>
<td>56</td>
<td>3.2.2 Physiotherapeutische Anamnese</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.2.3 Körperliche Untersuchung</td>
<td>56</td>
<td>3.4 Schlussfolgerungen</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.5 Physiotherapeutische Ziele</td>
<td>56</td>
<td>3.6 Empfehlungen für den Alltag</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>Atemnot bei Multipler Sklerose</td>
<td>67</td>
<td>4.1 Vorgeschichte</td>
<td>67</td>
<td>4.1.1 Medizinische Befunde</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.1.2 Physiotherapeutische Anamnese</td>
<td>67</td>
<td>4.1.3 Körperliche Untersuchung</td>
<td>67</td>
</tr>
</tbody>
</table>
XIV Inhaltsverzeichnis

7.3 Schlussfolgerungen .. 71
7.4 Physiotherapeutische Zielsetzung 71
7.5 Physiotherapeutische Maßnahmen 72
7.6 Empfehlungen für den Alltag 75
8 Frühmobilisation nach akutem Myokardinfarkt 77
8.1 Vorgeschichte ... 77
8.2 Untersuchungsbefunde 78
 8.2.1 Medizinische Befunde 78
 8.2.2 Physiotherapeutische Anamnese 79
 8.2.3 Körperliche Untersuchung 79
8.3 Schlussfolgerungen .. 80
8.4 Physiotherapeutische Ziele 81
8.5 Physiotherapeutische Maßnahmen 82
8.6 Empfehlungen für den Alltag 84
9 Stationäre Rehabilitation nach Myokardinfarkt 87
9.1 Vorgeschichte ... 87
9.2 Untersuchungsbefunde 87
 9.2.1 Medizinische Befunde 87
 9.2.2 Physiotherapeutische Anamnese 88
 9.2.3 Körperliche Untersuchung 89
9.3 Schlussfolgerungen .. 89
9.4 Physiotherapeutische Zielsetzung 90
9.5 Physiotherapeutische Maßnahmen 90
9.6 Empfehlungen für den Alltag 94
10 Myokardinfarkt mit Herzrhythmusstörungen 97
10.1 Vorgeschichte ... 97
10.2 Untersuchungsbefunde 98
 10.2.1 Medizinische Befunde 98
 10.2.2 Physiotherapeutische Anamnese 98
 10.2.3 Körperliche Untersuchung 100
10.3 Schlussfolgerungen .. 100
10.4 Physiotherapeutische Zielsetzung 101
10.5 Physiotherapeutische Maßnahmen 101
10.6 Empfehlungen für den Alltag 107
11 Frühmobilisation bei dekompensierter Herzinsuffizienz 109
11.1 Vorgeschichte ... 109
11.2 Untersuchungsbefunde 110
 11.2.1 Medizinische Befunde 110
 11.2.2 Physiotherapeutische Anamnese 111
 11.2.3 Körperliche Untersuchung 112
11.3 Schlussfolgerungen .. 112
12 Herzinsuffizienz bei dilatativer Kardiomyopathie 121
12.1 Vorgeschichte ... 121
12.2 Untersuchungsbefunde 122
 12.2.1 Medizinische Befunde 122
 12.2.2 Physiotherapeutische Anamnese 124
 12.2.3 Körperliche Untersuchung 124
12.3 Schlussfolgerungen .. 125
12.4 Physiotherapeutische Zielsetzung 126
12.5 Physiotherapeutische Maßnahmen 126
12.6 Empfehlungen für den Alltag 128
13 Stationäre Rehabilitation nach Bypassoperation 131
13.1 Vorgeschichte ... 131
13.2 Untersuchungsbefunde 132
 13.2.1 Medizinische Befunde 132
 13.2.2 Physiotherapeutische Anamnese 133
 13.2.3 Körperliche Untersuchung 133
13.3 Schlussfolgerungen .. 133
13.4 Physiotherapeutische Zielsetzung 134
13.5 Physiotherapeutische Maßnahmen 135
13.6 Empfehlungen für den Alltag 139
14 Stationäre Rehabilitation nach Aortenklappeneroperation 141
14.1 Vorgeschichte ... 141
14.2 Untersuchungsbefunde 142
 14.2.1 Medizinische Befunde 142
 14.2.2 Physiotherapeutische Anamnese 143
 14.2.3 Körperliche Untersuchung 143
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitennummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3</td>
<td>Schlussfolgerungen</td>
<td>144</td>
</tr>
<tr>
<td>14.4</td>
<td>Physiotherapeutische Zielsetzung</td>
<td>144</td>
</tr>
<tr>
<td>14.5</td>
<td>Physiotherapeutische Maßnahmen</td>
<td>145</td>
</tr>
<tr>
<td>14.6</td>
<td>Empfehlungen für den Alltag</td>
<td>148</td>
</tr>
<tr>
<td>15</td>
<td>Orthostatische Hypotonie und Sturz</td>
<td>151</td>
</tr>
<tr>
<td>15.1</td>
<td>Vorgeschichte</td>
<td>151</td>
</tr>
<tr>
<td>15.2</td>
<td>Untersuchungsbefunde</td>
<td>152</td>
</tr>
<tr>
<td>15.2.1</td>
<td>Medizinische Befunde</td>
<td>152</td>
</tr>
<tr>
<td>15.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>153</td>
</tr>
<tr>
<td>15.2.3</td>
<td>Körperliche Untersuchung</td>
<td>153</td>
</tr>
<tr>
<td>15.3</td>
<td>Schlussfolgerungen</td>
<td>154</td>
</tr>
<tr>
<td>15.4</td>
<td>Physiotherapeutische Zielsetzung</td>
<td>156</td>
</tr>
<tr>
<td>15.5</td>
<td>Physiotherapeutische Maßnahmen</td>
<td>157</td>
</tr>
<tr>
<td>15.6</td>
<td>Empfehlungen für den Alltag</td>
<td>160</td>
</tr>
<tr>
<td>16</td>
<td>Periphere arterielle Verschlusskrankheit Stadium IIb</td>
<td>161</td>
</tr>
<tr>
<td>16.1</td>
<td>Vorgeschichte</td>
<td>161</td>
</tr>
<tr>
<td>16.2</td>
<td>Untersuchungsbefunde</td>
<td>162</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Medizinische Befunde</td>
<td>162</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>163</td>
</tr>
<tr>
<td>16.2.3</td>
<td>Körperliche Untersuchung</td>
<td>163</td>
</tr>
<tr>
<td>16.3</td>
<td>Schlussfolgerungen</td>
<td>165</td>
</tr>
<tr>
<td>16.4</td>
<td>Physiotherapeutische Zielsetzung</td>
<td>166</td>
</tr>
<tr>
<td>16.5</td>
<td>Physiotherapeutische Maßnahmen</td>
<td>167</td>
</tr>
<tr>
<td>16.6</td>
<td>Empfehlungen für den Alltag</td>
<td>169</td>
</tr>
<tr>
<td>17</td>
<td>Varikose</td>
<td>171</td>
</tr>
<tr>
<td>17.1</td>
<td>Vorgeschichte</td>
<td>171</td>
</tr>
<tr>
<td>17.2</td>
<td>Untersuchungsbefunde</td>
<td>172</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Medizinische Befunde</td>
<td>172</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>172</td>
</tr>
<tr>
<td>17.2.3</td>
<td>Körperliche Untersuchung</td>
<td>173</td>
</tr>
<tr>
<td>17.3</td>
<td>Schlussfolgerungen</td>
<td>174</td>
</tr>
<tr>
<td>17.4</td>
<td>Physiotherapeutische Zielsetzung</td>
<td>175</td>
</tr>
<tr>
<td>17.5</td>
<td>Physiotherapeutische Maßnahmen</td>
<td>175</td>
</tr>
<tr>
<td>17.6</td>
<td>Empfehlungen für den Alltag</td>
<td>179</td>
</tr>
<tr>
<td>18</td>
<td>Perioperatives Management bei Bauchoperationen</td>
<td>181</td>
</tr>
<tr>
<td>18.1</td>
<td>Vorgeschichte</td>
<td>181</td>
</tr>
<tr>
<td>18.2</td>
<td>Untersuchungsbefunde</td>
<td>182</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Medizinische Befunde</td>
<td>182</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>182</td>
</tr>
<tr>
<td>18.2.3</td>
<td>Körperliche Untersuchung</td>
<td>182</td>
</tr>
<tr>
<td>18.3</td>
<td>Schlussfolgerungen</td>
<td>183</td>
</tr>
<tr>
<td>19</td>
<td>Intensivpflichtigkeit nach abdominalchirurgischem Eingriff bei Adipositas</td>
<td>189</td>
</tr>
<tr>
<td>19.1</td>
<td>Vorgeschichte</td>
<td>189</td>
</tr>
<tr>
<td>19.2</td>
<td>Untersuchungsbefunde</td>
<td>190</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Medizinische Befunde</td>
<td>190</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>190</td>
</tr>
<tr>
<td>19.2.3</td>
<td>Körperliche Untersuchung</td>
<td>190</td>
</tr>
<tr>
<td>19.3</td>
<td>Schlussfolgerungen</td>
<td>191</td>
</tr>
<tr>
<td>20</td>
<td>COPD IV mit nichtinvasiver Beatmung</td>
<td>199</td>
</tr>
<tr>
<td>20.1</td>
<td>Vorgeschichte</td>
<td>199</td>
</tr>
<tr>
<td>20.2</td>
<td>Untersuchungsbefunde</td>
<td>200</td>
</tr>
<tr>
<td>20.2.1</td>
<td>Medizinische Befunde</td>
<td>200</td>
</tr>
<tr>
<td>20.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>202</td>
</tr>
<tr>
<td>20.3</td>
<td>Schlussfolgerungen</td>
<td>203</td>
</tr>
<tr>
<td>21</td>
<td>Intensivmedizinisches Management nach Lungenresektion</td>
<td>211</td>
</tr>
<tr>
<td>21.1</td>
<td>Vorgeschichte</td>
<td>211</td>
</tr>
<tr>
<td>Kapitel</td>
<td>Titel</td>
<td>Seitenzahl</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>21.2</td>
<td>Untersuchungsbefunde</td>
<td>212</td>
</tr>
<tr>
<td>21.2.1</td>
<td>Medizinische Befunde</td>
<td>23.1</td>
</tr>
<tr>
<td>21.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>23.2</td>
</tr>
<tr>
<td>21.2.3</td>
<td>Körperliche Untersuchung</td>
<td>23.2.1</td>
</tr>
<tr>
<td>21.3</td>
<td>Schlussfolgerungen</td>
<td>23.2.2</td>
</tr>
<tr>
<td>21.4</td>
<td>Physiotherapeutische</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>Zielsetzung</td>
<td>23.4</td>
</tr>
<tr>
<td>21.5</td>
<td>Physiotherapeutische</td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td>Maßnahmen</td>
<td>23.6</td>
</tr>
<tr>
<td>21.6</td>
<td>Weiterführende Empfehlungen</td>
<td>23.7</td>
</tr>
<tr>
<td>22</td>
<td>Intensivpflichtigkeit nach</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>Bypass-Operation und</td>
<td>24.2</td>
</tr>
<tr>
<td></td>
<td>Tracheostoma</td>
<td>24.2.1</td>
</tr>
<tr>
<td></td>
<td>Vorgeschichte</td>
<td>24.2.2</td>
</tr>
<tr>
<td></td>
<td>Untersuchung</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td>Physiotherapeutische</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>Zielsetzung</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td>Physiotherapeutische</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td>Maßnahmen</td>
<td>23.8</td>
</tr>
<tr>
<td>23</td>
<td>Metabolisches Syndrom</td>
<td>25.1</td>
</tr>
<tr>
<td>23.1</td>
<td>Vorgeschichte</td>
<td>25.2</td>
</tr>
<tr>
<td>23.2</td>
<td>Untersuchungsbefunde</td>
<td>25.3</td>
</tr>
<tr>
<td>23.2.1</td>
<td>Medizinische Befunde</td>
<td>25.4</td>
</tr>
<tr>
<td>23.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>25.5</td>
</tr>
<tr>
<td>23.3</td>
<td>Körperliche Untersuchung</td>
<td>25.6</td>
</tr>
<tr>
<td>23.4</td>
<td>Schlussfolgerungen</td>
<td>25.7</td>
</tr>
<tr>
<td>23.5</td>
<td>Physiotherapeutische</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>Zielsetzung</td>
<td>25.9</td>
</tr>
<tr>
<td>23.6</td>
<td>Empfehlungen für den Alltag</td>
<td>25.10</td>
</tr>
<tr>
<td>24</td>
<td>Chemotherapie bei</td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td>Mammakarzinom</td>
<td>26.2</td>
</tr>
<tr>
<td>24.1</td>
<td>Vorgeschichte</td>
<td>26.3</td>
</tr>
<tr>
<td>24.2</td>
<td>Untersuchung</td>
<td>26.4</td>
</tr>
<tr>
<td>24.2.1</td>
<td>Medizinische Befunde</td>
<td>26.5</td>
</tr>
<tr>
<td>24.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>26.6</td>
</tr>
<tr>
<td>24.3</td>
<td>Körperliche Untersuchung</td>
<td>26.7</td>
</tr>
<tr>
<td>24.4</td>
<td>Schlussfolgerungen</td>
<td>26.8</td>
</tr>
<tr>
<td>24.5</td>
<td>Physiotherapeutische</td>
<td>26.9</td>
</tr>
<tr>
<td></td>
<td>Zielsetzung</td>
<td>27.1</td>
</tr>
<tr>
<td>24.6</td>
<td>Empfehlungen für den Alltag</td>
<td>27.2</td>
</tr>
<tr>
<td>25</td>
<td>Intensivpflichtigkeit nach</td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td>Bypass-Operation und</td>
<td>28.2</td>
</tr>
<tr>
<td></td>
<td>Tracheostoma</td>
<td>28.3</td>
</tr>
<tr>
<td>26</td>
<td>Metabolisches Syndrom</td>
<td>29.1</td>
</tr>
<tr>
<td>26.1</td>
<td>Vorgeschichte</td>
<td>29.2</td>
</tr>
<tr>
<td>26.2</td>
<td>Untersuchungsbefunde</td>
<td>29.3</td>
</tr>
<tr>
<td>26.2.1</td>
<td>Medizinische Befunde</td>
<td>29.4</td>
</tr>
<tr>
<td>26.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>29.5</td>
</tr>
<tr>
<td>26.3</td>
<td>Körperliche Untersuchung</td>
<td>29.6</td>
</tr>
<tr>
<td>26.4</td>
<td>Schlussfolgerungen</td>
<td>29.7</td>
</tr>
<tr>
<td>26.5</td>
<td>Physiotherapeutische</td>
<td>29.8</td>
</tr>
<tr>
<td></td>
<td>Zielsetzung</td>
<td>29.9</td>
</tr>
<tr>
<td>26.6</td>
<td>Empfehlungen für den Alltag</td>
<td>30.1</td>
</tr>
<tr>
<td>27</td>
<td>Metabolisches Syndrom</td>
<td>31.1</td>
</tr>
<tr>
<td>27.1</td>
<td>Vorgeschichte</td>
<td>31.2</td>
</tr>
<tr>
<td>27.2</td>
<td>Untersuchungsbefunde</td>
<td>31.3</td>
</tr>
<tr>
<td>27.2.1</td>
<td>Medizinische Befunde</td>
<td>31.4</td>
</tr>
<tr>
<td>27.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>31.5</td>
</tr>
<tr>
<td>27.3</td>
<td>Körperliche Untersuchung</td>
<td>31.6</td>
</tr>
<tr>
<td>27.4</td>
<td>Schlussfolgerungen</td>
<td>31.7</td>
</tr>
<tr>
<td>27.5</td>
<td>Physiotherapeutische</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>Zielsetzung</td>
<td>31.9</td>
</tr>
<tr>
<td>27.6</td>
<td>Empfehlungen für den Alltag</td>
<td>32.1</td>
</tr>
<tr>
<td>28</td>
<td>Chemotherapie bei</td>
<td>33.1</td>
</tr>
<tr>
<td></td>
<td>Mammakarzinom</td>
<td>33.2</td>
</tr>
<tr>
<td>28.1</td>
<td>Vorgeschichte</td>
<td>33.3</td>
</tr>
<tr>
<td>28.2</td>
<td>Untersuchung</td>
<td>33.4</td>
</tr>
<tr>
<td>28.2.1</td>
<td>Medizinische Befunde</td>
<td>33.5</td>
</tr>
<tr>
<td>28.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>33.6</td>
</tr>
<tr>
<td>28.3</td>
<td>Körperliche Untersuchung</td>
<td>33.7</td>
</tr>
<tr>
<td>28.4</td>
<td>Schlussfolgerungen</td>
<td>33.8</td>
</tr>
<tr>
<td>28.5</td>
<td>Physiotherapeutische</td>
<td>33.9</td>
</tr>
<tr>
<td></td>
<td>Zielsetzung</td>
<td>34.1</td>
</tr>
<tr>
<td>28.6</td>
<td>Empfehlungen für den Alltag</td>
<td>34.2</td>
</tr>
<tr>
<td>29</td>
<td>Metabolisches Syndrom</td>
<td>35.1</td>
</tr>
<tr>
<td>29.1</td>
<td>Vorgeschichte</td>
<td>35.2</td>
</tr>
<tr>
<td>29.2</td>
<td>Untersuchungsbefunde</td>
<td>35.3</td>
</tr>
<tr>
<td>29.2.1</td>
<td>Medizinische Befunde</td>
<td>35.4</td>
</tr>
<tr>
<td>29.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>35.5</td>
</tr>
<tr>
<td>29.3</td>
<td>Körperliche Untersuchung</td>
<td>35.6</td>
</tr>
<tr>
<td>29.4</td>
<td>Schlussfolgerungen</td>
<td>35.7</td>
</tr>
<tr>
<td>29.5</td>
<td>Physiotherapeutische</td>
<td>35.8</td>
</tr>
<tr>
<td></td>
<td>Zielsetzung</td>
<td>35.9</td>
</tr>
<tr>
<td>29.6</td>
<td>Empfehlungen für den Alltag</td>
<td>36.1</td>
</tr>
<tr>
<td>30</td>
<td>Chemotherapie bei</td>
<td>37.1</td>
</tr>
<tr>
<td></td>
<td>Mammakarzinom</td>
<td>37.2</td>
</tr>
<tr>
<td>30.1</td>
<td>Vorgeschichte</td>
<td>37.3</td>
</tr>
<tr>
<td>30.2</td>
<td>Untersuchung</td>
<td>37.4</td>
</tr>
<tr>
<td>30.2.1</td>
<td>Medizinische Befunde</td>
<td>37.5</td>
</tr>
<tr>
<td>30.2.2</td>
<td>Physiotherapeutische Anamnese</td>
<td>37.6</td>
</tr>
<tr>
<td>30.3</td>
<td>Körperliche Untersuchung</td>
<td>37.7</td>
</tr>
<tr>
<td>30.4</td>
<td>Schlussfolgerungen</td>
<td>37.8</td>
</tr>
<tr>
<td>30.5</td>
<td>Physiotherapeutische</td>
<td>37.9</td>
</tr>
<tr>
<td></td>
<td>Zielsetzung</td>
<td>38.1</td>
</tr>
<tr>
<td>30.6</td>
<td>Empfehlungen für den Alltag</td>
<td>38.2</td>
</tr>
</tbody>
</table>
Atemphysiotherapie bei skoliosebedingter Dyspnoe

Symptome: Belastungsdyspnoe – Infektanfälligkeit – geringe Belastbarkeit

6.1 Vorgeschichte

Vor ½ Jahr hat die Patientin einen neuen Job bekommen und arbeitet seitdem bei einem Unterneh-
6.1 Untersuchungsbefunde

6.1.1 Medizinische Befunde

Die Untersuchungsbefunde zeigen Zeichen einer ausgeprägten restriktiven Funktionseinschränkung der Lunge bedingt durch die reduzierte Dehnfähigkeit der Lunge aufgrund der bestehenden Thoraxdeformität.

Röntgen Wirbelsäule

In Bezug auf Thorax und Lunge sind folgende **Auffälligkeiten** aus dem Röntgenbild ersichtlich (Abb. 6.2):

- Es zeigt sich eine deutliche Thoraxasymmetrie, wobei die Zwischenrippenräume links pathologisch verringert sind und damit das darunter liegende Lungengewebe komprimieren, wohingegen die Zwischenrippenräume rechts verbreitert sind.
- Die Klavikulae stehen steil nach oben gezogen als Zeichen eines vermehrten Einsatzes der Atemhilfsmuskulatur und die rechte Schulter steht höher und ist nach ventral gekippt, da die Skapulaspitze über den Rippenbuckel nach dorsal gedreht wird.
- Im Bereich der linken Lunge sind bedingt durch die Kompression Zeichen einer Minderbelüftung erkennbar.
Spirometrie

Die Lungenfunktionsuntersuchung (> 1.2.1) ergab bei der letzten Untersuchung eine Verschlechterung gegenüber dem Vorbefund (> Tab. 6.1). Wie in > Tab. 6.1 ersichtlich haben sich sowohl die totale Lungenkapazität, als auch die Vitalkapazität im Jahrresabstand deutlich verschlechtert. Dies passt zu der im Röntgen festgestellten Progression der Thoraxdeformität und der u. a. damit verbundenen schlechteren Pumpfunktion der Inspirationsmuskulatur. Die maximale Einatemkraft gemessen über den maximalen inspiratorischen Druck (MIP) weist auf eine Schwäche der Inspirationsmuskulatur hin.

KLINISCHER HINTERGRUND
Restriktion des respiratorischen Systems

Unter Restriktion versteht man die verminderte Ausdehnungsfähigkeit der Lunge, die intrapulmonale Ursachen wie eine Lungenfibrose oder extrapulmonale Ursachen wie eine Thoraxdeformität oder Pumpinsuffizienz der Atemmuskulatur haben kann. Die Pumpinsuffizienz kann u. a. durch folgende Ursachen bedingt sein:
- Verzogene Aufhängung der Muskulatur am knöchernen Thorax z. B. bei Thoraxdeformitäten
- Instabile Aufhängung am knöchernen Thorax z. B. bedingt durch Serienrippenfrakturen
- Zwerchfellverformung oder -lähmung
- Flüssigkeit in Bereich der Lunge oder Pleura (Ödem, Erguss)
- Adipositas permagna

Um gegen die erhöhten Widerstände bedingt durch die Restriktion Volumen zu verschieben, müssen die Patienten erhöhte Atemarbeit leisten.

Definition Lungenrestriktion anhand der Lungenfunktionsuntersuchung: FEV₁/VC ≥ 70 % und VC sowie TLC erniedrigt (und FEV₁ normal oder herabgesetzt).

Blutgasanalyse

- pO₂: 72 mmHg
- pCO₂: 42 mmHg
- S₉O₂: 95 %
- pH-Wert: 7,46
Atemphysiotherapie bei skoliosebedingter Dyspnoe

6-Minuten-Gehtest

Die Beschwerden der Atemnot haben in den letzten Monaten bei körperlichen Aktivitäten wie Radfahren, Treppensteigen, Bergaufgehen stark zugenommen. Daher wurde im Rahmen der Untersuchung die Ausdauerfähigkeit mittels 6-Minuten-Gehtest getestet. Für die Patientin wurde ein Normwert von 682 m ermittelt.

PRAKTISCHER TIPP

Durchführung des 6-Minuten-Gehtests

Untersuchungsumgebung:
• Ort, an dem ggf. eine notfallmäßige Betreuung möglich ist, z. B. Krankenhauskorridor
• Ungehinderte Gehstrecke von 10 oder 30 m, alle 3 m Markierung der Stecke
• Wendepunkte, die mit einem farbigen Verkehrskegel gekennzeichnet sind

Vorbereitung:
• Der Patient muss mindestens 10 Minuten vor Testbeginn zum Messen der Ruheparameter ruhig auf einem Sessel gesessen haben.
• Messen von Puls, Blutdruck und Sauerstoffsättigung in Ruhe und Erfragen des Borg-Wertes.

Durchführung:
• Instruktion: „Gehen Sie in den folgenden 6 Minuten so weit wie Sie können. Das Ziel ist, innerhalb dieser Zeit eine möglichst große Strecke zurückzulegen. Pausen sind jederzeit erlaubt, gehen Sie aber weiter, sobald Sie sich dazu wieder in der Lage fühlen. Sie dürfen nicht laufen.“
• Zur Motivation dürfen folgende Sätze benutzt werden: „Sehr gut, Sie haben noch xx Minuten.“, „Weiter so, Sie haben noch xx Minuten.“ Es sind keine zusätzlichen Worte oder Gesten zur Motivation erlaubt, da diese den Test verfälschen.

• Messung der Werte vor Testbeginn, am Testende sowie 1, 3 und 5 Minuten nach Testende zur Beurteilung der Regenerationsfähigkeit des Patienten.
• Beträgt die Gehdauer weniger als 6 Minuten, werden die effektive Dauer und die dabei erreichte Gehstrecke sowie der Abbruchgrund notiert.
• Mögliche Formeln zur Bestimmung der Sollgehstrecke:
 > Formel 6.1,
 > Formel 6.2

Normwertberechnung Männer (40–80 Jahre):
Sollwert [m] = (7,57 × Größe [m]) – (5,02 × Alter [Jahre]) – (1,76 × Gewicht [kg]) – 309 m

Normwertberechnung Frauen (40–80 Jahre):
Sollwert [m] : (2,11 × Größe [m]) – (5,78 × Alter [Jahre]) – (2,29 × Gewicht [kg]) + 667 m

Insgesamt konnte die Patientin eine Wegstrecke von 435 m zurücklegen, wobei der auf ihr Alter, Gewicht und Körpergröße bezogene Normwert 682 m beträgt (> Tab. 6.2). Am Ende der Testung machte die Patientin eine subjektive Selbsteinschätzung ihrer Atembelastung von 9 auf der Borg-Skala (0–10). Es besteht keine Sauerstoffpflicht bei körperlicher Belastung bzw. beim Training.

6.2.2 Physiotherapeutische Anamnese

Im Rahmen der Erstuntersuchung durch den Atemphysiotherapeuten erfolgt eine Analyse der medizinischen Befunde, um zu evaluieren, wodurch die Belastungsdyspnoe und Infektanfälligkeit begründet sein können.

Frau Skoliotika erzählt dem Physiotherapeuten, dass ihr der Jobwechsel vor ½ Jahr viel Freude bereitet hat. Wegen der sich häufenden infektbedingten Fehlzeiten sorgt sie sich allerdings darum, diesen...
Job auch behalten zu können. Es bereitet ihr außerdem derzeit Sorgen, dass sie dyspnoebedingt kaum mehr sportliche Aktivitäten ausüben kann und auch bei anstrengenderen Alltagstätigkeiten wie dem Tragen des Einkaufs die Treppen rauf auf Unterstützung durch den Partner angewiesen ist.

6.2.3 Körperliche Untersuchung

Vitalparameter

Inspektion der Vitalparameter im Sitzen:
- Atemleichternde Position: ja
- Atemfrequenz: 20 Atemzüge/min
- Verhältnis Inspiration/Expiration: 1 : 1,5
- Atemweg: Nase
- Atemform: überwiegend sternal
- Zyanose: nein
- Herzfrequenz: 84/min

Auskultation

Es sind beidseits basal abgeschwächte Atemge-räusche zu hören. Im komprimierten linken Lungenareal fehlt das Atemgeräusch nahezu vollständig. Es gibt auskultatorisch keinen Hinweis auf Sekret.

Inspektion der Statik

Bei der Untersuchung der Haltung im Stand (Statik-überprüfung) wurde die Patientin von vorne, seitlich und hinten befunden. Folgendes Ergebnis zeigte sich:
- Bereichslokalisation Becken:
 - Crista iliaca rechts höher als links
 - Becken leicht nach ventral geneigt
- Bereichslokalisation Wirbelsäule:
 - Verstärkte linkskonvexe Lateralflexion im Bereich der LWS und rechtskonvexe Lateralflexion im Bereich der BWS
 - Verstärkte BWS-Kyphose im Bereich Th2–Th6
 - Hyperlordose in der HWS
 - Hyperlordose in der LWS
- Bereichslokalisation Schultergürtel: rechte Schulter steht höher und ist protrahierter als die linke Schulter im Sinne einer Scapula alata

Vorbeugetest (Adams-Test)

Im Anschluss an die Palpation überprüfte der Therapeut die aktive Beweglichkeit der Wirbelsäule in Flexion, Extension und Rotation. Alle drei Bewegungsrichtungen waren mäßig eingeschränkt.
6 Atemphysiotherapie bei skoliosebedingter Dyspnoe

Palpation

Im nächsten Schritt wurde mittels Palpation der Muskeltonus erhoben. Die gesamte inspiratorische Atemhilfsmuskulatur, M. trapezius, Mm. scaleni und M. pectoralis major, wiesen einen Hypertonus auf.

Beweglichkeit des Thorax während der Atmung

Der Therapeut legte dazu die Hände flachig auf den Brustkorb und gab der Patientin den Auftrag, tief ein- und auszuatmen. Diese Untersuchung wurde sowohl am Thorax dorsal als auch ventral durchgeführt. Bei einer guten Thoraxmobilität wandern die Hände des Therapeuten nach lateral und kranial (angulare Bewegung).

Es war eine deutlich reduzierte Bewegungsamplitude bei In- und Exspiration feststellbar. Die laterale Bewegung des Thorax war nur in einem geringen Umfang spürbar, rechts mehr als links.

Muskelfunktion

Das Diaphragma wurde palpatorisch auf die Aktivierungsfähigkeit hin in Rückenlage überprüft. Der Therapeut palpavierte bei diesem Test den Unterbauch mit zwei Fingern (Abb. 6.5). Im Anschluss wurde die Patientin aufgefordert, eine tiefe Inspiration durchzuführen. Sollten dabei die beiden Finger des Therapeuten durch die Inspiration der Patientin aus dem Gewebe gedrückt werden, zeigt das Diaphragma eine gute Aktivierungsfähigkeit. Findet keine Druckübertragung vom Abdomen bis zu den Palpationsfingern des Therapeuten statt, besteht eine Insuffizienz des...
Diaphragmas. Bei Frau Skoliotika zeigte sich eine mäßige Aktivierungsfähigkeit des Diaphragmas. Der Druck unter den Fingern wurde leicht erhöht, es konnte jedoch nicht genügend Kraft durch das Diaphragma aufgebaut werden, um die Finger nach oben zu drücken.

6.3 Schlussfolgerungen

Untersuchung des Bewegungsapparats

Die veränderte Statik des Thorax und der BWS geht mit muskulären Veränderungen einher (Abb. 6.6). Die Mm. scaleni und der M. pectoralis minor weisen einen veränderten Tonus auf, der durch die vermehrte Beanspruchung als Atemhilfsmuskulatur verursacht wird. Dadurch

Abb. 6.6 Pathologisch veränderte muskuläre Verhältnisse bei Skoliose. a Überdehnte und kontrakte Muskeln. b Beseitigung der Asymmetrie des Rumpfes durch Verkürzung der zuvor überdehnten und Dehnung der zuvor kontraktierten Muskeln. [L231]
ist die Effektivität der Muskelarbeit gestört. Die reduzierte posturale Kontrolle der extensorischen Muskulatur der Wirbelsäule stellt auch eine Gefahr für das Voranschreiten der Kyphose im Bereich der BWS dar.

Die genannten Einschränkungen erklären die Aspekte des Bewegungsapparats, die für die Belastungsdyspnoe der Patientin verantwortlich sind.

Röntgen, Tests, Blutgasanalyse, Spirometrie

Diese strukturellen und funktionellen Abweichungen haben einen großen Einfluss auf die Funktionsweise der Lunge bei Inspiration und Exspiration und äußern sich bei Frau Skoliotika in Form einer niedrigen Vitalkapazität und eines niedrigen maximalen inspiratorischen Drucks (MIP). Auch der Peakflow-Wert ist mit 31/sec zu gering, um insbesondere in z.B. reduziertem Allgemeinzustand im Rahmen eines Infekts hustefektiv zu sein.

Bei der Röntgenuntersuchung wurden ein vergrößerter Abstand der Rippen links und ein verbreiteter rechts festgestellt. Die durch die knöchernen Veränderungen bedingte Kompression des darunter liegenden Lungengewebes erklärt sowohl die Dyspnoe durch ein reduziertes Volumen, das zum Gasaus tausch zur Verfügung steht, als auch die Infektanfälligkeit, da der Abtransport des physiologisch gebildeten Bronchialsekrets nur eingeschränkt möglich ist. Dadurch besteht die Gefahr der Vermehrung pathogener Keime und konsekutiv eines bronchialen Infekts.

Durch die Verschlechterung der Skoliose auf lumbaler Ebene und folglich die Änderung der Spannungsverhältnisse im Diaphragma zeigte die Patientin eine reduzierte Aktivierungsfähigkeit des Diaphragmas, was sich auch in einer niedrigen inspiratorischen Maximalkraft (gemessen bei der Spirometrie als maximal inspiratorischer Druck = MIP) bemerkbar macht. Ebenfalls auf lumbaler Ebene konnte eine veränderte Ausdauerfähigkeit der lokalen muskulären Kontrolle vom M. transversus abdominis, der das Diaphragma in seiner Spannung unterstützt, festgestellt werden.

Die Beeinträchtigung der Atemfunktion macht sich bei verschiedenen körperlichen Aktivitäten (Radfahren, Gehen) bemerkbar. Die Patientin zeigte eine verringerte Ausdauerleistungsfähigkeit mit Atemnot (Borg-Skala 9 [0–10]) bei starker Belastung. Der auslösende Mechanismus dieser Atemnot bei körperlicher Aktivität lässt sich durch die beschriebene Restriktion erklären. Zusätzlich zeigte sich eine erhöhte Herzfrequenz in Ruhe (84/min) und bei Belastung (154/min), die auf die Notwendigkeit der Kompensationsarbeit des Herzens zur adäquaten Sauerstoffversorgung hinweist. Dass dieser Zustand schon länger besteht, zeigt sich am vergrößerten Herzschatte im Thoraxröntgen.

Die Patientin möchte rasch mit der Therapie beginnen und freut sich schon auf Übungen, die sie zu Hause selbstständig durchführen kann. Im Rahmen der Untersuchung zeigte die Patientin großes Interesse und der Therapeut kann von einer guten Compliance der Patientin ausgehen.

Risikostratifizierung

Aufgrund der Kompressionsatelektase kann man auf eine erhöhte Infektanfälligkeit schließen, da das in diesem Lungenabschnitt produzierte Bronchialsekret nur ungenügend abtransportiert werden kann und sich pathogene Keime darin vermehren können.

Außerdem kann aufgrund des reduzierten Lungenvolumens und damit einhergehender Beeinträchtigung des Gas austauschs die Belastungsdyspnoe erklärt werden. Um ausreichend Sauerstoff für die arbeitenden Organe zur Verfügung zu stellen, muss das Herz kompensatorisch Mehrarbeit leisten.

Folge dieser Mehrarbeit kann eine Hypertrophie des Herzens in Form eines Cor pulmonale sein. Um das Herz zu entlasten, sind alle Maßnahmen zielführend, welche die Sauerstoffversorgung der Patientin nachhaltig verbessern.
6.5 Physiotherapeutische Maßnahmen

Lagerung zur Ventilationsverbesserung

➤ Fall 3

Atemmuskeltraining

Ziele des Atemmuskeltrainings bei Frau Skoliotika sind:
- Erhöhung der inspiratorischen Volumina
- Steigerung der Kraft und Ausdauerfähigkeit des Diaphragmas, um der erhöhten Atemarbeit Rechnung zu tragen
- Anheben der Ermüdungsschwelle des Diaphragmas
- Reduktion der belastungsinduzierten Dyspnoe, z. B. beim Treppensteigen, Radfahren

Wichtig für das aktive Training der inspiratorischen Atemmuskulatur ist eine möglichst aufrechte korrigierte Position der Wirbelsäule. Eine aufrechte Hal tung erlaubt eine verbesserte Belüftung schlecht ventilierter Lungenareale, was man u. a. an einer Steigerung der Sauerstoffsättigung, gemessen mit einem Pulsoximeter, erkennen kann.

Außerdem bedingt die Kyphose im Bereich der BWS u. a. eine Veränderung der Protraktion der Schulterblätter und dadurch veränderte Längenverhältnisse der am Schulterblatt ansetzenden Muskulatur. Zum Beispiel kommt der M. pectoralis minor in eine mechanisch ungünstigere Position und kann nicht die optimale Kraftentfaltung auf die Rippen aufbringen.

PRAXTISCHER TIPP

Erstellung eines spezifischen Atemmuskeltraining

1. Feststellung des MIP und der Ausdauer des Zwerchfells:
 a. Maximal ausatmen
 b. So rasch wie möglich gegen einen definierten Widerstand im Rahmen einer Spirometrie, mittels eines Mouthpressuremeters oder Atemmuskeltrenningsgeräts einatmen
 c. 10 Wiederholungen

2. Festlegen der Trainingsbelastung für Kraft- und Ausdauertraining:
 a. Variante 1: ausgehend vom besten MIP-Ergebnis für das
 i. Krafttraining 80–100 % des MIP einstellen
 ii. Ausdauertraining 50–70 % des MIP einstellen
 b. Variante 2: den Mittelwert der Messergebnisse ermitteln und davon ausgehend für das
 i. Krafttraining 80–100 % einstellen
 ii. Ausdauertraining 50–70 % einstellen

3. Training der Atempumpfunktion durch Widerstandsatzmung:
 a. Krafttraining:
 i. 1–3 Sätze à 10 Wiederholungen und mind. 80 % MIP
 b. Ausdauertraining:
 i. Intervalltraining: 1 Minute gegen vorgegeben Widerstand mit 50–70 % MIP atmen, danach 30 Sekunden Pause
 ii. Atemtechnik: Atemfrequenz im Verhältnis 1 : 1, Atemtiefe etwas tiefer als normale Ruheatmung, 10 × 1 Minute Trainingsatmung mit dazwischen jeweils 30 Sekunden Pause

5. Schulung der korrekten Atemtechnik (Atemmuskeltraining) (Abb. 6.7):
 - Isokapnische Hyperventilation:rasche und tiefe Inspiration über eine vorgegebene Zeit, wobei durch einen Beutel CO₂ rückgeatmet wird. Geräte: z. B. Spirotiger.

KLINISCHER HINTERGRUND
Hebelgesetz und M. pectoralis minor

Die Länge des Hebels, relativ zum Ansatz des Muskels, ist entscheidend für die Veränderung der Kraftverhältnisse der inspiratorischen Muskulatur (Abb. 6.8). Ist der Hebel des Kraftvektors sehr kurz, d. h. der Ansatzpunkt des Muskels liegt näher am Drehpunkt (in Abb. 6.8 bei ca. 5 mm statt bei ca. 7 mm), muss die Muskulatur eine größere Kraft aufbringen, um die Last des Brustkorbs bei der Inspiration anzuheben. Mit diesem physikalischen Modell lässt sich die Wichtigkeit der aufrechten Haltung gut ableiten.

Allgemeines Krafttraining

Das allgemeine Krafttraining wird mit Kurzhanteln zusätzlich zu den Aufrichtungsübungen der Wirbelsäule durchgeführt, wobei insbesondere die Atemhilfsmuskulatur gekräftigt wird, um v. a. die Belastungsdyspnoe zu reduzieren.

Danach wird die Patientin instruiert, ihre trainierte Muskulatur gut zu dehnen, um Verkürzungen und damit ein insuffizientes Arbeiten zu verhindern.

Allgemeines Ausdauertraining

Frau Skoliotika fährt so oft wie möglich mit dem Rad. Die Belastung fällt ihr dabei leichter, da sie sich auf den Lenker stützen und so ihre Atemhilfsmuskulatur einsetzen kann. Außerdem ist sie der Ansicht, dass sie so ihre Thoraxdeformität ein wenig besser kaschieren kann, als wenn sie geht.

Als Ausdauertraining wird also ein Fahrradergometertraining auf Basis der beim 6-Minuten-Gehstest erhobenen Werte begonnen. Trainingshäufigkeit sind 2 ×/Woche jeweils 30 Minuten pro Trainings-

Zur Verbesserung der Kraft, um insbesondere mit zusätzlichen Lasten wie Einkaufstaschen Treppen steigen zu können, wird Frau Skoliotika 2 ×/Woche auf ein Steppertraining eingestellt.

Jegliches Ausdauertraining absolviert die Patientin mit einem Pulsgerät.

Mobilisation

Die Mobilisation des Thorax stellt für diese Patientin einen wichtigen Aspekt dar. Es dürfen bei den Bewegungsaufgaben keine stechenden Schmerzen auftreten und die Patientin wird anleitend, die Übung mit ihrer Atmung zu kombinieren.

Aktive Übungen zur Stabilisation

Der aktive Bewegungsapparat stellt einen wichtigen Schwerpunkt für die Behandlung der idiopathischen adoleszenten Skoliose dar. Für eine physiologische Aufrichtung benötigt es ein optimales Verhältnis zwischen Rücken- und Bauchmuskulatur. Ein optimales Kraftverhältnis bedeutet einerseits die ideale Belastungs- und Zugverteilungen auf die Wirbelsäule und ist andererseits Grundvoraussetzung für eine koordinierte Bewegung und Atmung. Besonderes Augenmerk muss auch auf die Kräftigung der schwachen Beckenbodenmuskulatur von Frau Skoliotika gelegt werden, um die LWS zu stabilisieren und die Husteinnahme zu gewährleisten.

Der M. transversus abdominis unterstützt die lokale Rumpfkontrolle und wird auch als lokaler Stabilisator bezeichnet. Er umschließt den Rumpf als Korsett und unterstützt bei einer guten Aktivierungsfähigkeit und optimalen Haltung das Zwerchfell in seiner Funktion. Ist nun eine schwache Funktion dieser posturalen Muskeln vorhanden, besteht eine unzureichende Position des Thorax, um das Diaphragma bei Inspiration optimal zu aktivieren. Dieser Zusammenhang wird auch als mechanische Kette bezeichnet (Abb. 6.9).

PRAKTISCHER TIPP

Wann ist die Trainingsbelastung ausreichend?

Bemerkt man bei einem Patienten ein leichtes Zittern der Muskulatur, bedeutet dies nicht automatisch das Ende der Übungssequenz. Vielmehr ist dies im Rahmen der Verbesserung der intermuskulären Koordination durchaus erwünscht. Entsteht jedoch durch das starke Zittern der Muskulatur eine Ausweichbewegung, die eine große Abweichung von der physiologischen Haltung des Patienten darstellt, ist die Übung zu beenden.

Versuch: 5 × 20 Sekunden Übungszeit mit 30 Sekunden Pause.

Evaluationskriterien

Eine Steigerung der inspiratorischen Lungenvolumina gemessen in der Spirometrie und eine Verbesserung des MIP lassen auf eine kräftigere Inspirationsmuskulatur und/oder auf eine verbesserte Aufrichtung der Wirbelsäule schließen. Durch eine Steigerung des
Peakflows und der Kraft der Beckenbodenmuskulatur kann die Husteffektivität verbessert werden.

Die Steigerung von Inspirationsvolumen und Zwerchfellkraft sollte sich in der Sauerstoffsättigung, dem 6-Minuten-Gehstest (Gehstrecke, Herzfrequenz), der Reduktion der Atemfrequenz und v. a. an der Verringerung der Belastungsdyspnoe zeigen. Auskultatorisch sollte das behandelte Lungenareal ein Strömungsgeräusch aufweisen.

Durch Verbesserung der Ventilation und Clearance des physiologisch gebildeten Bronchialsekretis ist die durch die Kompression des Lungenareals bedingte Reduktion der Infekte zu erwarten.

6.6 Empfehlungen für den Alltag

Frau Skoliotika ist hochmotiviert, selbst dazu beizutragen, ihre körperliche Leistungsfähigkeit zu verbessern, und absolviert alle therapeutischen Maßnahmen in korrigierter Ausgangsposition. Sie soll 2 × wöchentlich ihr Ausdauertraining am Fahrradergometer und 2 × wöchentlich mit einem Stepper durchführen, um für die sportlichen Aktivitäten und für Alltagsbelastungen fit zu sein.

2 ×/Woche sollen Hantelübungen gemacht werden, um die Atemhilfsmuskulatur zu trainieren, 3 ×/Woche ein Atemmuskeltaining mit einem mechanischen Trainingsgerät.

Der Patientin hat erlernt, wie sie den Beckenboden kräftigen bzw. aktivieren kann, was sich gut in ihre Skoliose-Übungen integrieren lässt. Die mit dem Therapeuten erarbeitete Lagerung zur Ventilationsverbesserung wird sie für einige Zeit jeweils abends beim Fernsehen oder Lesen einnehmen.

Frau Skoliotika bleibt weiterhin in physiotherapeutischer Behandlung, um der Progression ihrer Kyphoskoliose entgegenzusteuern. Dazu zählen auch die Durchführung von Dehnübungen und Übungen zur Haltungskorrektur.

LITERATUR
Negrini S et al. Why do we treat adolescent idiopathic scoliosis? What we want to obtain and to avoid for our patients. SOSORT 2005 Consensus paper. Scoliosis 2006; 1: 4
Atemphysiotherapie bei Asthma bronchiale

Definition

Atemphysiotherapie bei Asthma bronchiale

Beim Asthma bronchiale handelt es sich um eine **chronische, entzündliche Erkrankung der Atemwege**, die durch eine dauerhaft bestehende bronchiale Hyperreaktivität bzw. Hyperreagibilität und eine variable Atemwegsobstruktion gekennzeichnet ist. Das Hauptsymptom, die anfallsweise auftretende Dyspnoe, ist Folge der Bronchialobstruktion, zu der es aufgrund einer vermehrten Sekretbildung, einem Hypertonus der Bronchialschleimhaut und einer Ödembildung in der Bronchialschleimhaut kommt.

Neben dem nicht-allergischen (intrinsischen) Asthma gibt es das allergische (extrinsische) Asthma, wobei sehr häufig Mischformen zu beobachten sind. Im Verlauf der Erkrankung können sowohl schubförmige Episoden auftreten als auch symptomfreie Intervalle.

7.1 Vorgeschichte

Nach häufigeren ambulanten Terminen beim niedergelassenen Pulmologen aufgrund akuter Beschwerden (vermehrt auftretende Atemnotsituationen, länger andauernde Erholungsphasen, Husten) entscheidet sich Herr Allergikus nun doch für die stationäre Aufnahme in einer pneumologischen Fachabteilung.

Bei stationärer Aufnahme wurden eine Laboruntersuchung, eine arterielle Blutgasanalyse, ein Lungenröntgen und eine Spirometrie durchgeführt. Laut behandelndem Pulmologen besteht derzeit für Herrn Allergikus die Indikation für eine Sauerstofftherapie mit 2 l/min. Die medikamentöse Therapie wurde an die aktuelle Situation angepasst. Es wurden ein hochdosiertes inhalatives und ein systemisches GlukokortikOID zur bestehenden Basistherapie hinzugefügt, die aus einem inhalativen lang wirksenden \(\beta_2 \)-Sympathikomimetikum, einem oralen ver-
zögert wirksamen β₂-Sympathikomimetikum und einem Theophyllin-Präparat bestand (Fall 1).

Vor der ersten Kontaktaufnahme mit dem Patienten erfolgte eine Analyse von relevanten medizinischen Befunden, um ein genaues Bild über das Ausmaß der Lungenfunktionseinschränkung zu bekommen und sein Risikoprofil und seine Belastbarkeit insbesondere in Bezug auf den Alltag ableiten zu können.

Zu diesem Fallbeispiel werden folgende Fragen beantwortet:
• Wie kann sich eine Verschlechterung des Asthmas bemerkbar machen?
• Welche Verhaltenstipps kann man einem Patienten für einen Asthma-Anfall geben?
• Wann ist es ratsam, ärztliche Hilfe in Anspruch zu nehmen?
• Wie kann man einem Asthmatiker körperliche Belastungen wie Sport ermöglichen?

7.2 Untersuchungsbefunde

7.2.1 Medizinische Befunde

Spirometrie

Die Lungenfunktion (1.2.1) zeigt das Bild enger Atemwege. Man sieht keinen Hinweis auf eine bronchiale Instabilität, die man in diesem Fall auch nicht erwarten würde, da die entzündliche Komponente ausschließlich zu einer passageren Abnahme des Bronchiallumens führt.

Folgende Messwerte ergab die Lungenfunktionsuntersuchung:
• \(V_{C_{\text{max}}} \): 75,1 \% (4,03 l), FVC: 52,7 \% FEV\(_1\): 41,1 \% (1,77 l), FEV\(_1\)/VC\(_{\text{max}}\): 53,8 \%, PEF: 60,2 \%, MEF 75: 35,9 \%, MEF 50: 18,9 \%, MEF 25: 28,8 \%, TLC: 102,4 \%, ITGV: 120,3 \%, RV: 153,3 \%

• Nach Gabe eines Bronchodilatators (= Bronchospasmolysetest): \(V_{C_{\text{max}}} \): 80 \% (4,35 l), FEV\(_1\): 58 \% (2,35 l), PEF-Zunahme von 280 ml

KLINISCHER HINTERGRUND

Bronchospasmolyse- und Provokationstest

Im Gegensatz dazu werden **Provokationstests** (Kälte, Methacholin oder die Exposition mit im Verdacht stehenden Allergenen) eingesetzt, mit denen gezielt körperliche oder psychische Reaktionen auf ein Medikament oder einen Reiz hervorgerufen werden können.

Labor

Immunglobuline vom Typ E (IgE) werden bei Kontakt mit Allergie auslösenden Stoffen gebildet und können im Blutbild bestimmt werden, ebenso die Zahl der Eosinophilen, die bei Allergikern erhöht sein kann.

Bei Herrn Allergikus ergab die Untersuchung folgende Werte: IgE 400 U/ml (Normalwert: bis 120 U/ml), Eosinophilie mit 10 \% (Normalwert: bis 4 \%).

Blutgasanalyse

Folgende Werte wurden bei Herrn Allergikus in Ruhe bei Raumluft erhoben: \(pO_2 \): 52,2 mmHg, \(pCO_2 \): 35,1 mmHg, pH-Wert 7,42, BE -1,8, \(S_\text{O}_2 \): 87 \%.

Die Blutgasanalyse zeigt somit, dass in Körperruhe eine Sauerstoffpflicht besteht. Aufgrund der bestehenden Dyspnoe (Borg-Skala 6 [0–10]) und der reduzierten Belastbarkeit des Patienten ist eine Bestimmung der Blutgaswerte unter Belastung zu Beginn des stationären Aufenthalts noch nicht möglich.
7.2 Untersuchungsbefunde

Röntgen Thorax

Das Röntgenbild der Lunge weist folgende Abweichungen der Norm auf, die eine physiotherapeutische Relevanz haben: vermehrte Strahlentransparenz der Lunge, vergrößerte Zwischenrippenräume, tiefstehende Zwerchfellkuppen und schmale Herzsilhouette.

6-Minuten-Gehtest

Bei Herrn Allergikus ist die Durchführung dieses standardisierten, submaximalen Leistungstests bei Befundaufnahme aufgrund einer zu starken Dyspnoe nicht möglich.

7.2.2 Physiotherapeutische Anamnese

Herr Allergikus gibt an, in den letzten Wochen sehr häufig anfallsartige Atemnotsituationen erlebt zu haben. Ebenfalls seien zunehmend Attacken unproduktiven Hustens aufgetreten.

7.2.3 Körperliche Untersuchung

Inspektion im Sitzen

- Einsatz der in- und expiratorischen Atemhilfsmuskulatur
- Mäßig erhöhte Atemfrequenz
FALL

Andreas Mühlbacher

12 Herzinsuffizienz bei dilatativer Kardiomyopathie

Symptome: Niedrige Leistungsfähigkeit – Atemnot – Ödeme

Definition

Dilatative Kardiomyopathie (dCMP)

12.1 Vorgeschichte

Herr Großherz, 54 Jahre alt, wird zur stationären kardialen Rehabilitation über 4 Wochen zur Verbesserung der Leistungsfähigkeit vor der Herztransplantation zugewiesen. Er hat vor 4 Jahren infolge einer Herpesmyokarditis eine dilatative Kardiomyopathie und Herzinsuffizienz NYHA III (Tab. 11.1) entwickelt. Seine Nebendiagnosen sind ein intermittierendes tachykardes Vorhofflimmern, eine Mitralvalveninsuffizienz II°, eine Trikuspidalinsuffizienz II° und eine sekundäre pulmonale arterielle Hypertonie (= pathologischer Anstieg des Blutdrucks im Lungenkreislauf).

KLINISCHER HINTERGRUND

Was passiert bei einer reduzierten Ejektionsfraktion?

Die Ejektionsfraktion (EF) gibt Aussage über die Pumpfunktion des linken Ventrikels. Sie vergleicht die Menge des ausgepumpten Blutes mit dem Gesamtvolumen im Ventrikel am Ende der Füllungsphase. Wenn eine niedrige EF vorliegt und somit nur eine verringerte Blutmenge pro Herzschlag ausgepumpt werden kann, muss das Herz entsprechend der Herzminutenvolumenformel (Formel 12.1) mit einem Herzfrequenzanstieg reagieren, um den Körper mit der gleichen Menge an Blut versorgen zu können. Wenn das Herzminutenvolumen durch eine hohe Herzfrequenz aufrecht erhalten werden muss, bedeutet dies eine erhöhte Belastung des Herzens, die mit einem erhöhten Sauerstoffbedarf der Herzmuskelzellen verbunden ist – chronisch schädigt dies das Herz weiter.

Herzminutenvolumen = Herzfrequenz × Schlagvolumen

Formel 12.1

Da immer Blut am Ende der Pumpphase in der linken Kammer verbleibt, kann die EF nie 100 % sein. Als Normwerte gelten ca. 50–70 %.

Zum Zeitpunkt der Aufnahme kann Herr Großherz langsam ein Stockwerk mit 2 Pausen gehen und hat nachts mit erschwerter Atmung zu kämpfen. Nach der Rehabilitation möchte er wieder mit seiner Gattin Radfahren und hat so als Hauptziel eine Verbesserung der Leistungsfähigkeit und Mobilität definiert. Für das interdisziplinäre Rehabilitationsteam steht zusätzlich die beste Vorbereitung auf eine Herztransplantation im Fokus.

Zu diesem Fallbeispiel werden folgende Fragen beantwortet:
- Wie stark darf man einen Patienten mit dilatativer Kardiomyopathie und fortgeschrittener Herzinsuffizienz belasten?
- Welche Kraft- und Ausdauertrainingsmethoden kommen zur Anwendung und wie sicher sind diese?
- Wie überprüft man die aktuelle Belastung des Patienten während des Trainings objektiv?
- Welche Anzeichen gibt es bei Verschlechterung der Herzinsuffizienz?
- Wie kann man Patienten auf eine Herztransplantation vorbereiten?

12.2 Untersuchungsbefunde

12.2.1 Medizinische Befunde

Um die aktuelle Belastbarkeit und die davon abhängige Trainingsintensität zu bestimmen, werden am ersten Tag des Reha-Aufenthaltes mehrere medizinische Untersuchungen durchgeführt.

Transthorakale Echokardiografie (TTE)

Die linksventrikuläre EF betrug 10 % und das diastolische linksventrikuläre Volumen 233 ml (ab > 210 ml hochgradig verändert). Zusätzlich zeigten sich eine Mitralklappensuffizienz II°, eine Tricuspidalklappensuffizienz II°, Rechtsherzbelastungszeichen mit einer geringen pulmonalen arteriellen Hypertonie (kalkulierter systolischer pulmonaler Druck 35 mmHg) und Aszites.

Ruhe-EKG

Im Ruhe-EKG von Herrn Großherz (Abb. 12.1) zeigte sich eine Sinusarrhythmie mit 87 Schlägen/min. Der Sinusknoten ist in diesem Fall nicht in der Lage, einen gleichmäßigen Rhythmus zu bilden. Der QRS-Komplex lässt auf einen kompletten Linkschenkelblock (QRS Dauer > 0,12 Sekunden) schließen; dabei ist die Erregungsüberleitung zwischen AV-Knoten und linkem Tawaraschenkel gestört. Das linksventrikuläre Perikard muss vom rechten Tawaraschenkel mitversorgt werden, was zu einem verbreiterten QRS-Komplex führt [Lederhuber und Lange 2010]. Zudem zeigten sich polymorphe venti-
12.2 Untersuchungsbefunde 123

Abb. 12.1 Sinusarrhythmie, verbreiterter QRS-Komplex (Linksschenkelblock) und ventrikuläre Extrasystolen im EKG [L271]

ventrikuläre Extrasystolen (VES), bei denen der QRS-Komplex nicht einer P-Welle folgt.

Spiroergometrie

Die Spiroergometrie ermöglicht eine Beurteilung der kardiopulmonalen Leistungsfähigkeit, indem sie die Reaktion von Herz, Kreislauf, Atmung und Stoffwechsel auf muskuläre Arbeit untersucht. Meist wird dieses diagnostische Verfahren auf einem Ergometer mit stufen- oder rampenförmig ansteigender Belastung durchgeführt. Währenddessen tragen die Patienten eine dicht sitzende Maske, die mit einem Spirometriegerät verbunden ist und die Analyse des Atemminutenvolumens sowie der O₂- und CO₂-Konzentration der Atemluft erlaubt. So ist eine Bestimmung der maximalen Sauerstoffaufnahme (VO₂max) und der anaeroben Schwelle möglich.

Bis zum Abbruch wegen aufstrebender Atemnot konnte Herr Großherz 5 Minuten und 25 Sekunden belastet werden. Mit maximal 91 Watt (Wmax; 49 % Soll) ist seine Leistungsfähigkeit hochgradig eingeschränkt. Die Herzfrequenz war unregelmäßig und stieg von 72/min auf 119/min (81 % Soll), der Blutdruck von 90/65 mmHg auf 100/70 mmHg. Das EKG zeigte einen Sinusrhythmus. Die maximale Sauerstoffaufnahme (VO₂max) betrug 1,07 l/min (Soll 2,63 l/min) und die relative VO₂max, die das Körpergewicht des Patienten miteinbezieht, 11 ml/min/kg-KG. Er hat einen maximalen Stoffwechselumsatz von 5 MET.

PRAKTISCHER TIPP

Praktischer Nutzen des MET

MET steht für Metabolisches Äquivalent und kann als Maß für die Belastbarkeit eines Organismus herangezogen werden (METmax). 1 MET entspricht dem Grundumsatz, also dem Energieverbrauch in Ruhe und einer Sauerstoffaufnahme von 3,5 ml/min/kgKG beim Mann bzw. 3,15 ml/min/kgKG bei der Frau. Erreicht z. B. eine 50 kg leichte Frau bei der Ergometrie eine maximale Belastung von 250 Watt, so entspricht dies ca. 15 MET, während ein 150 kg schwerer Mann bei derselben Wmax 8 MET leistet. Es gibt zahlreiche Tabellen, die den Energieverbrauch verschiedener Aktivitäten in MET zeigen. So entspricht das Fahrradfahren am Fahrradergometer mit 25 Watt einem Stoffwechselumsatz von 2,0 MET oder Waldarbeit mit Baumfällen 8,0 MET [Tomasits und Haber 2011]. Dies ermöglicht in der Physiotherapie eine Abschätzung darüber, ob ein Mensch in der Lage ist, bestimmte Aktivitäten durchführen zu können.

6-Minuten-Gehtest

Im 6-Minuten-Gehtest erreichte Herr Großherz folgende Ergebnisse (> 6.2.1):
• Gehstrecke: 420 Meter
• Maximale Herzfrequenz: 114/min
S$_{O_2}$: < 92%
Maximaler Blutdruck: 105/78 mmHg
Maximales Dyspnoe-Empfinden: 6 (0–10) auf der Borg-Skala

Röntgen Thorax

Das Röntgenbild der Lunge von Herrn Großherz zeigt einen deutlich verbreiterten Herzschatten und leichte Stauungszeichen.

Laborwerte

Harnstoff und Kreatinin sind deutlich erhöht, was für eine eingeschränkte Nierenfunktion spricht.

Subjektive Lebensqualität

Die subjektiv empfundene Lebensqualität wurde mit dem EuroQuol-Fragebogen erhoben und ergab 65 Punkte von maximal möglichen 100 Punkten (www.euroquol.org).

12.2.2 Physiotherapeutische Anamnese

Körperliche Aktivität und Partizipation

Im Moment ist die Ausübung seiner Hobbies – Radfahren und Nordic Walking – nicht möglich, weil er sich zu matt fühlt und auch Angst hat, sich zu überlasten. Obwohl er ein E-Bike besitzt, traut er sich derzeit nicht zu, damit zu fahren. Grund dafür ist die zunehmende Unsicherheit beim Aufsteigen und Kurvenfahren. Er versucht dreimal wöchentlich einen 30-minütigen Spaziergang mit seiner Gattin zu unternehmen, bei dem sie inklusive Pausen knapp 1,5 km zurücklegen. Er kann auch nicht mehr so wie früher mit seinen Enkelkindern spielen, was ihm sehr wichtig war.

Herr Großherz ist lebenslanger Nichtraucher und war bis zur Virusmyokarditis ein sehr aktiver Mensch mit gesundem Lebensstil. Sehr wichtig ist es ihm, mehr Selbstvertrauen bezüglich des körperlichen Trainings im Rahmen seiner aktuellen Leistungsfähigkeit zu gewinnen. Er möchte auf die mögliche Herztransplantation bestmöglich vorbereitet sein.

12.2.3 Körperliche Untersuchung

Inspektion

- Blasse Hautfarbe und vom Krankheitsverlauf gezeichneter Gesichtsausdruck
- Leichte Kurzatmigkeit während des Sprechens und des Eintretens in den Therapieraum
12.3 Schlussfolgerungen

Im Hinblick auf das Training weist er gleich mehrere Faktoren auf, die ihn als Hochrisikopatienten klassifizieren. Ein körperliches Training ist nur dann sicher durchführbar, wenn er dabei durchgehend überwacht wird (EKG-Monitoring etc.) und so mögliche Zeichen der Überlastung sofort erkannt und berücksichtigt werden.

P R A K T I S C H E R T I P P

Therapie und Training mit ICD (> Abb. 12.2)

Es wird empfohlen, auf große und energische Schulterbewegungen zu verzichten, um einen übermäßigen Zug auf die implantierte Elektrode zu verhindern. Normale Bewegungen des Schultergelenks, wie sie bei den Aktivitäten des täglichen Lebens vorkommen, stellen aber kein höheres Risiko dar [Buckley 2008]. Für ein moderates Ausdauertraining gelten mit einer klar definierten Warm-up-, Trainings- und Cool-Down-Phase dieselben Trainingsprinzipien wie für Patienten ohne ICD.

Vor allem für das Ausdauertraining ist es wichtig, die Auslösefrequenz des Defibrillators zu kennen. Meist liegt diese bei ≥200/min [Madhavan, Friedman 2013]. Die Trainingsherzfrequenz sollte in jedem Fall mindestens 10 Schläge/min unter der Auslösefrequenz liegen [ACSM 2013].

Das Berühren eines Menschen während der Schockauslösung des ICD ist – im Gegensatz zur Defibrillation von außen unter Verwendung eines externen halbautomatischen Defibrillators – laut Herstellerangaben aufgrund der Haut als Isolationsschicht absolut ungefährlich.

Abb. 12.2 Röntgenbild eines implantierten Kardioverter-Defibrillators (ICD) [R236]
12 Herzinsuffizienz bei dilatativer Kardiomyopathie

Risikostratifizierung

Herr Großherz gilt aufgrund der vorliegenden Untersuchungsergebnisse als Hochrisiko-Patient. Als solcher muss er während der Therapie mit einem EKG-Monitor überwacht und beobachtet werden. Folgende Punkte begründen diese Risikostratifizierung [ACPICR 2009]:
- EF < 40 % mit EF = 10 % (höchstgradig eingeschränkt).
- Komplikationen im Krankheitsverlauf: überlebter Herzstillstand.
- Komplexe Rhythmusstörungen in Ruhe oder bei Belastung: ventrikuläre Extrasystolen.
- Chronische Herzinsuffizienz
- Pulmonale arterielle Hypertonie (PAP = 35 mmHg): Ein mittlerer pulmonalarterieller Druck (PAP) > 55 mmHg gilt als absolute Kontraindikation für ein Krafttraining. Bei Herrn Großherz kann somit ein Krafttraining durchgeführt werden, allerdings muss auf die Vermeidung einer Überanstrengung geachtet werden. Die Herzfrequenz während des Trainings soll 120/min nicht übersteigen [Marra et al. 2015] und die Sauerstoff sättigung (SpO2) über 88–90 % liegen [Spruit et al. 2013; Marra et al. 2015].
- ICD-Träger
- Medikation:
 - Diuretika zur Ödem- und Blutdruckreduktion inklusive Flüssigkeitsrestriktion mit maximaler Trinkmenge von 1,5 l/Tag
 - β-Blocker, Antihypertensiva und Gerinnungshemmer
- Steigerung der Leistungsfähigkeit
- Verbesserung des Gleichgewichtssinns für mehr Sicherheit beim Auf-, Absteigen und Kurvenfahren
- Erhöhte Sicherheit beim Abschätzen der Belastungsgrenzen
- Verbesserung der Mobilität bei den ADL:
 - 2 Stockwerke ohne Pause hochgehen
 - Verbesserung im Umgang mit der Belastungsdyspnöe
 - Optimierung des Heimübungsprogramms
 - Aufhalten des Fortschreitens der sekundären Skelettmuskeldysfunktion

12.4 Physiotherapeutische Zielsetzung

- Bestmögliche Vorbereitung für die bevorstehende Herztransplantation
- Herr Großherz möchte nach der Rehabilitation wieder mit seiner Ehefrau Radfahren können:

12.5 Physiotherapeutische Maßnahmen

Physiotherapie im Einzeltherapiesetting

- Geh- und Gleichgewichtstraining; Radfahren inklusive Auf- und Absteigen
- Übungen zur Verbesserung der Körperwahrnehmung hinsichtlich der Belastungsgrenzen, z. B. Treppensteigen
- Einsatz und Erlernen des Umgangs mit der Borg-Skala
- Anpassung und Erweiterung des Heimübungsprogrammes
- Vorbereitung auf die Herztransplantation (Trainingsverordnung und Information)

Ausdauertraining – Intervalltraining

die Ejektionsfraktion des linken Ventrikels nur eingeschränkt mit der Leistungsfähigkeit korreliert [Thow 2006].

Intervalltraining

VORSICHT

Woran ist eine Verschlechterung der Herzinsuffizienz zu erkennen?

- Gewichtszunahme von ≥ 2 kg innerhalb von 2 Tagen
- Beinödeme (schwerkraftbedingt meist am Fußrücken und Unterschenkel, beidseits)
- Vermehrte Dyspnoe oder Anstrengungsgefühl bei Belastung
- Erhöhter Ruhepuls
- Weitere Zeichen (ärztliche Untersuchung): Lungenödem (Auskultation), abnorme Herzgeräusche, Erhöhung des BNP-Wertes (Labor)

Krafttraining

Voraussetzung und Struktur eines sicheren Krafttrainings
Essentiell für einen sicheren Ablauf des Trainings ist eine Schulung, bei der die Grundlagen durch den Physiotherapeuten vermittelt werden müssen. Es muss klar definiert werden, dass jegliche Pressatmung und auch Schmerzen kein Teil eines sicheren Krafttrainings

Trainingsplanung

Herr Großherz trainiert mit 60 % seines 1RM im Hypertrophiebereich und absolviert pro Gerät 3 Serien à 10 Wiederholungen mit einer lohnenden Pause zwischen 30 Sekunden und einer Minute. Das Krafttraining findet 3 x/Woche für je 25 Minuten statt. Der Trainingsplan umfasst Übungen für die Rumpf- und Extremitätenmuskulatur, wobei bei Herzinsuffizienzpatienten das eingelenkige Training kleinerer Muskelgruppen empfohlen wird [Piepoli 2011]. Im Zuge der ersten Trainingseinheiten ist ein Übungseffekt zu erwarten, der sich durch eine bessere Technik und somit einen ökonomischeren Einsatz der Muskulatur erklären lässt. In diesem Fall kann das Trainingsgewicht auf 70 % des 1RM gesteigert werden.

Inspiratorisches Atemmuskeltraining

Zur Durchführung ➤ Fall 6.

Interdisziplinär mitarbeitende Disziplinen

- **Ergotherapie:** Erlernen von Energy Conservation Techniques (➤ Fall 11). Ziele sind die selbstständige Körperpflege und das Erlernen von Strategien, die eine Atemnot so gering wie möglich halten (z. B. beim Zähneputzen).
- **Massage:** Zur Detonisierung der Atemhilfsmuskulatur.
- **Psychologie:** Aufgrund der Angstzustände wird zur Unterstützung eine psychologische Beratung im Rahmen der Reha angeboten.
- **Diätologie:** Schulung hinsichtlich salzarmen Nahrung und Flüssigkeitsrestriktion.

Evaluationskriterien

➤ Tab. 12.1, ➤ Tab. 12.2
- Steigerung der Leistungsfähigkeit um 45 Watt bzw. des maximalen Stoffwechselumsatzes um 2,3 MET
- Steigerung der maximalen Belastungsdauer während der Ergometrie um ca. 3 Minuten
- Verbesserung der 6-Minuten-Gehstrecke um 108 Meter

12.6 Empfehlungen für den Alltag

Um eine möglichst gute Ausgangsbasis für die Herztransplantation zu schaffen, bekommt Herr Großherz folgende Empfehlungen:
- Weiterführung des begonnenen Trainings im Rahmen einer ambulanten kardialen Rehabilitation
- ½ Stunde allgemeine körperliche Aktivität 5 x/ Woche mit moderater Intensität (Borg-Skala 13)
- Verwendung eines Pedometers (= Schrittzähler) als Feedback zum Aktivitätslevel
- Anwendung der Borg-Skala auch zu Hause
12.6 Empfehlungen für den Alltag

- Tägliches Wiegen am Morgen (Gewichtszunahme kann Zeichen einer Dekompensation der Herzinsuffizienz sein ➔ Fall 11)

Tabelle 12.1 Befunde der Ergometrie und des inspiratorischen Atemmuskeltrainings von Herrn Großherz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bei Aufnahme</th>
<th>Vor Entlassung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belastungsdauer</td>
<td>5 Min. 25 Sek.</td>
<td>8 Min. 3 Sek.</td>
</tr>
<tr>
<td>W_{max}</td>
<td>91 Watt</td>
<td>136 Watt</td>
</tr>
<tr>
<td>Maximale Herzfrequenz</td>
<td>119/min</td>
<td>142/min</td>
</tr>
<tr>
<td>Maximale Blutdruck</td>
<td>100/70 mmHg</td>
<td>111/55 mmHg</td>
</tr>
<tr>
<td>Relative VO$2$${\text{max}}$</td>
<td>11 ml/min/kg</td>
<td>16 ml/min/kg</td>
</tr>
<tr>
<td>MET</td>
<td>5 MET</td>
<td>7,3 MET</td>
</tr>
<tr>
<td>MIP (Maximum Inspiratory Pressure)</td>
<td>40 mbar</td>
<td>80 mbar</td>
</tr>
</tbody>
</table>

Tabelle 12.2 Ergebnisse des 6-Minuten-Gehtests bei Herrn Großherz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bei Aufnahme</th>
<th>Vor Entlassung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehstrecke</td>
<td>420 Meter</td>
<td>528 Meter</td>
</tr>
<tr>
<td>Maximale Herzfrequenz</td>
<td>114/min</td>
<td>124/min</td>
</tr>
<tr>
<td>S_pO_2</td>
<td>< 92 %</td>
<td>< 93 %</td>
</tr>
<tr>
<td>Maximale Blutdruck</td>
<td>105/78 mmHg</td>
<td>111/55 mmHg</td>
</tr>
<tr>
<td>Maximales Dyspnoe-Empfinden</td>
<td>6/10</td>
<td>5/10</td>
</tr>
</tbody>
</table>

Literatur

ACPCIR Standards for physical activity and exercise in the cardiac population. www.acpcir.com

O’Connor CM et al. Efficacy and Safety of Exercise Training in Patients With Chronic Heart Failure: HF-ACTION Randomized Controlled Trial. JAMA 2009; 301(14): 1439–1450

Throw MK. Exercise Leadership in Cardiac Rehabilitation: An evidence based approach. West Sussex: Wiley; 2006

Ob praktizierender Physiotherapeut oder noch in Ausbildung/Studium das Fallbuch Physiotherapie: Innere Medizin mit Schwerpunkt Kardiologie/ Pulmologie zeigt Ihnen anhand konkreter Patientenfälle Therapieprozesse, gibt Hinweise und hilft Ihnen das therapeutische Vorgehen zu optimieren.

Praxisbezogen und wissenschaftlich fundiert: In unterschiedlich schwierige Fallbeispiele gegliedert, „übersetzen“ Experten die aktuelle wissenschaftliche Literatur in die tägliche Arbeit mit Patienten und geben Ihnen konkrete Tipps für die Praxis. Durch die unterschiedlichen Schwierigkeitsgrade profitieren alle – vom Ungeübten bis zum „alten Hasen“.

Clinical Reasoning: Der Autor erklärt, warum er welche Intervention gewählt hat. Das hilft Ihnen Gedankenschritte und Zusammenhänge zu verstehen und daraus eigene Maßnahmen abzuleiten.

Hilfreich: Kästen wie „Cave“, „praktischer Tipp“, „klinischer Hintergrund“ und „was wäre wenn …“ zeigen Wichtiges auf einen Blick.

Der erste Band u.a. mit den Themen: COPD, Pneumonie, Asthma, Myokardinfarkt, Herzinsuffizienz, Rehabilitation nach Herzoperation, periphere arterielle Verschlusskrankheit, Varikose, präoperatives Management bei bauchchirurgischen Eingriffen, Metabolisches Syndrom, Chemotherapie bei Mammakarzinom