Fascia: THE TENSIONAL NETWORK OF THE HUMAN BODY

This book represents an important collaboration between clinicians of the manual therapies and scientists in several disciplines that grew out of the first three International Fascia Research Congresses (Boston, Amsterdam, and Vancouver). The book editors, Robert Schleip PhD, Thomas Findley MD PhD, Leon Chaitow DO and Peter Huijing PhD, were major organizers of these congresses and used their extensive experience to select chapters and contributors for this book.

This volume therefore brings together contributors from diverse backgrounds who share the desire to bridge the gap between theory and practice in our current knowledge of the fascia and goes beyond the 2007, 2009 and 2012 congresses to define the state-of-the-art, from both the clinical and scientific perspective.

Features include:
- Reflects the efforts of almost 100 scientists and clinicians from throughout the world to establish a scientific basis for given clinical experiences
- Offers comprehensive coverage ranging from anatomy and physiology, clinical conditions and associated therapies, to recently developed research techniques
- Designed to organize relevant information for professionals involved in the therapeutic manipulation of the body’s connective tissue matrix (fascia) as well as for scientists involved in basic science research
- Explores the role of fascia as a bodywide communication system
- Presents the latest information on myofascial force transmission
- Explores the importance of fascia in the context of a sensory organ - for example, its important proprioceptive and nociceptive functions which have implications for the generation of low back pain and dysfunction
- Describes new imaging methods which confirm the connectivity of organs and tissues

Fascia: The Tensional Network of the Human Body will be ideal for all professionals who have an interest in fascia and human movement - physiotherapists, osteopathic physicians and osteopaths, chiropractors, structural integration practitioners, manual therapists, massage therapists, acupuncturists, yoga or Pilates instructors, exercise scientists and personal trainers - as well as physicians involved with musculoskeletal medicine, pain management and rehabilitation, and basic scientists working in the field.
Fascia: The Tensional Network of the Human Body

The science and clinical applications in manual and movement therapy

Edited by

Robert Schleip PhD, MA
Director Fascia Research Project, Division of Neurophysiology, Ulm University, Germany; Research Director European Rolfing Association; Vice President Ida P. Rolf Research Foundation; Certified Rolfing & Feldenkrais Teacher

Thomas W Findley MD, PhD
Director of Research for the Rolf Institute of Structural Integration; Director of the Center for Healthcare Knowledge Management, VA Medical Center, East Orange NJ; Professor of Physical Medicine, UMDNJ - New Jersey Medical School, Newark, New Jersey USA;

Leon Chaitow ND, DO (UK)
Registered Osteopath and Naturopath; Honorary Fellow and Former Senior Lecturer, School of Life Sciences, University of Westminster, London, UK; Fellow, British Naturopathic Association

Peter A Huijing PhD
Professor emeritus Functionality of the locomotor system Research Instituut MOVE, Faculteit Bewegingswetenschappen, Vrije Universiteit, Amsterdam, The Netherlands
Contents

On-line video resources ... x
Contributors ... xi
Introduction ... xv
Color plate

Section I Scientific foundations ... 1
Section Editors: Robert Schleip and Peter A Huijing

PART 1 Anatomy of the fascial body

1.1 General anatomy of the muscle fasciae ... 5
Peter P Purslow and Jean-Paul Delage

1.2 Somatic fascia ... 11
Frank H Willard

1.3 Fascia superficialis .. 19
Marwan Abu-Hijleh, Amol Sharad Dharap and Philip F Harris

1.4 Deep fascia of the shoulder and arm .. 25
Carla Stecco and Antonio Stecco

1.5 Deep fascia of the lower limbs .. 31
Carla Stecco and Antonio Stecco

1.6 The thoracolumbar fascia: An integrated functional view of the
anatomy of the TLF and coupled structures ... 37
Andry Vleeming

1.7 The deeper fasciae of the neck and ventral torso 45
Rainer Breul

1.8 Visceral fascia ... 53
Frank H Willard

1.9 Membranous structures within the cranial bowl and intraspinal space . . 57
Torsten Liem and Ralf Vogt

1.10 Diaphragmatic structures .. 67
Serge Paoletti

PART 2 Fascia as an organ of communication

2.1 Fascia as an organ of communication ... 77
Robert Schleip

2.2 Proprioception .. 81
Jaap C van der Wal

2.3 Interoception: A new correlate for intricate connections between fascial
receptors, emotion, and self recognition ... 89
Robert Schleip and Heike Jäger
PART 3 Fascial force transmission

3.1 Force transmission and muscle mechanics: General principles 113
Peter A Huijing

3.2 Myofascial force transmission: An introduction ... 117
Peter A Huijing

3.3 Myofascial chains: A review of different models .. 123
Philipp Richter

3.4 Anatomy Trains and force transmission ... 131
Thomas Myers

3.5 Biotensegrity: The mechanics of fascia ... 137
Stephen M Levin and Danièle-Claude Martin

3.6 The subcutaneous and epitendinous tissue behavior of the multimicrovacuolar sliding system .. 143
Jean Claude Guimberteau

PART 4 Physiology of fascial tissues

4.1 The physiology of fascia: An introduction .. 149
Frans Van den Berg

4.2 Fascia is alive: How cells modulate the tonicity and architecture of fascial tissues ... 157
Robert Schleip, Heike Jäger and Werner Klingler

4.3 Extracellular matrix .. 165
Frans Van den Berg

4.4 The influence of pH and other metabolic factors on fascial properties 171
Jörg Thomas and Werner Klingler

4.5 Fluid dynamics in fascial tissues ... 177
Guido F Meert

Section II Clinical application ... 183
Section Editors: Thomas W Findley and Leon Chaitow

PART 5 Fascia-related disorders

5.1 Fascia-related disorders: An introduction .. 187
Thomas W Findley

5.2 Dupuytren’s disease and other fibrocontractive disorders 191
Ian L Naylor

5.3 “Frozen shoulder” ... 199
Axel Schultheis, Frank Reichwein and Wolfgang Nebelung
5.4 Spastic paresis .. 207
Mick Kreulen, Mark JC Smeulders and Peter A Huijing

5.5 Diabetic foot ... 215
Sicco A Bus

5.6 Scleroderma and related conditions 225
Tanya M Ball

5.7 Trigger points as a fascia-related disorder 233
Roland U Gautschi

5.8 Fascia-related disorders: Hypermobility 245
Nicol C Voermans and Peter A Huijing

5.9 Anatomy of the plantar fascia 253
Scott Wearing

PART 6 Diagnostic procedures for fascial elasticity

6.1 Diagnostic procedures for fascial elasticity: An introduction 265
Thomas W Findley

6.2 Fascial palpation .. 269
Leon Chaitow, Patrick Coughlin, Thomas W Findley and Thomas Myers

6.3 Hypermobility and the hypermobility syndrome: Assessment and management 279
Jane Simmonds

PART 7 Fascia-oriented therapies

7.1 Inclusion criteria and overview 293
Leon Chaitow

7.2 Trigger point therapy .. 297
Jan Dommerholt

7.3 Rolfing structural integration 303
Monica Caspari and Heidi Massa

7.4 Myofascial induction approaches 311
Andrzej Pilat

7.5 Osteopathic manipulative therapies and fascia 319
Hollis H King

7.6 Connective tissue manipulation 327
Stephanie A Prendergast and Elizabeth H Rummer

7.7 Fascial manipulation ... 335
Carla Stecco and Antonio Stecco

7.8 Managing dysfunctional scar tissue 343
Petra Valouchová and Karel Lewit

7.9 Acupuncture as a fascia-oriented therapy 349
Dominik Irnich and Johannes Fleckenstein

7.10 Gua sha ... 359
Arya Nielsen
7.11 Prolotherapy 367
 Manuel F Cusi
7.12 Neural therapy 375
 Rainer Wander and Stefan Weinschenk
7.13 Dynamic fascial release – manual and tool assisted vibrational therapies 383
 Zachary Comeaux
7.14 Graston technique®: A contemporary instrument assisted mobilization method for the evaluation and treatment of soft tissue lesions 391
 Warren I Hammer
7.15 The fascial distortion model 397
 Georg Harrer
7.16 Frequency-specific microcurrent 405
 Carolyn McMakin
7.17 Surgery and scarring 411
 Willem J Fourie
7.18 Temperature effects on fascia 421
 Werner Klingler
7.19 Neurodynamics: Movement for neuropathic pain states 425
 Michel W Coppieters and Robert J Nee
7.20 Stretching and fascia 433
 Thomas Myers and Christopher Frederick
7.21 Fascia in yoga therapeutics 441
 Thomas Myers
7.22 Pilates and fascia: The art of “working in” 449
 Marie-José Blom
7.23 Nutrition model to reduce inflammation in musculoskeletal and joint diseases 457
 Mary T Hankinson and Elizabeth A Hankinson
7.24 Fascial fitness: Suggestions for a fascia-oriented training approach in sports and movement therapies 465
 Divo G Müller and Robert Schleip

Section III Research directions 477
 Section Editor: Peter A Huijing

PART 8 Fascia research: Methodological challenges and new directions

8.1 Fascia: Clinical and fundamental scientific research: Considering the scientific process 481
 Peter A Huijing
8.2 Imaging: Ultrasound 483
 Helene Langevin and Yasuo Kawakami
8.3 Advanced MRI techniques for in-vivo biomechanical tissue movement analysis 489
 Cengizhan Ozturk, Alper Yaman, Can A Yucesoy and Peter A Huijing
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Roles of fascia in molecular biology of adaptation of muscle size</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>Richard T Jaspers, Can A Yucesoy and Peter A Huijing</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Mathematical modeling</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td>Can A Yucesoy and Peter A Huijing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
<td>511</td>
</tr>
<tr>
<td></td>
<td>Heike Jäger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>515</td>
</tr>
</tbody>
</table>
Marwan F Abu-Hijleh MBCh, PhD, MHPE
Professor & Chairman, Department of Anatomy, College of Medicine & Medical Sciences, Arabian Gulf University, Bahrain

Michel W Coppieters PT, PhD
Associate Professor, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Australia

Manuel F Cusi MBBS, CertSpMed(RACGP), FACSP, FFSEM(UK)
Conjoint Lecturer, Faculty of Medicine, University of New South Wales; Sport & Exercise Medicine Physician in private practice, Sydney, Australia

Tanya M Ball MSc BA BCSI LSSM
Board Certified KMI® Structural Integrator/ Sports Massage and Remedial Therapist & Tutor, Basingstoke, UK

Patrick Coughlin PhD
Professor, Dept. of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA

Frans van den Berg PT, MT, OMT, BSc
Senior Instructor Orthopaedic Manual Therapy, Zell am Moos, Austria

Jean-Paul Delage PhD
Inserm U 1034 (Adaptation cardiovasculaire à l’ischémie) Université Victor Segalen, Bordeaux, France

Marie-José Blom
Movement educator and Pilates Master Teacher. Founder/President of SmartSpine Works co, LLC and Long Beach Dance Conditioning inc. International presenter/lecturer, Marina Del Rey, Ca USA

Amol Sharad Dharap MBBS, MS
Assistant Professor of Anatomy, Arabian Gulf University, Bahrain

Rainer Breul Dr rer nat med habil, DO h.c.
Professor of Anatomy, Professor of Osteopathy Ludwig Maximilian University, Munich, Germany

Jan Dommerholt PT, DPT, MPS
Physical Therapist, Bethesda Physiocare/Myopain Seminars, Bethesda, MD, USA; Adjunct Associate Professor, Shenandoah University, Winchester, VA, USA; Associate Professor, Universidad CEU Cardenal Herrera, Valencia, Spain

Sicco A Bus PhD
Senior Investigator and Head Human Performance Laboratory, Department of Rehabilitation, Academic Medical Center, University of Amsterdam, The Netherlands

Thomas W Findley MD, PhD
VA Medical Center, East Orange NJ; Professor of Physical Medicine, UMDNJ - New Jersey Medical School, Newark NJ, USA

Martha F Caspari RN, RS
Faculty member, Rolf Institute of Structural Integration, Boulder CO USA; Certified Advanced Rolfner, Rolf Movement Integration Practitioner, Sao Paulo, Brazil

Johannes Fleckenstein MD
Registrar in Anaesthesia, Multidisciplinary Pain Centre, Department of Anaesthesiology, University of Munich, Germany

Leon Chaitow ND, DO
Registered Osteopath and Naturopath; Honorary Fellow and Former Senior Lecturer, School of Life Sciences, University of Westminster, London, UK; Fellow, British Naturopathic Association

Willem J Fourie PT, MSc
Private practitioner, Johannesburg, South Africa

Zachary Comeaux DO (US), FAAO
Professor, Division of Osteopathic Principles and Practice, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA

Chris Frederick PT
Physical Therapist; KMI Certified Structural Integrator; Co-founder Stretch to Win Institute for Fascial Stretch Therapy, Tempe, AZ, USA
Roland U Gautschi MA, dipl. PT
Senior-Instructor Triggerpoint-Therapy IMTT®,
Baden, Switzerland

Jean Claude Guimberteau MD
Plastic surgeon and Hand surgeon. Scientific Director
Institut Aquitain de la Main. Institut Aquitain de la main,
Pessac, France

Warren I Hammer DC, MS, DABCO
Doctor of Chiropractic, Norwalk, CT, USA Postgraduate
Faculty, New York Chiropractic College

Elizabeth A Hankinson BA
Study Coordinator, Amyloid Treatment and Research
Program, Boston University School of Medicine, Boston,
Massachusetts, USA

Mary Therese Hankinson MBA, MS, RD, EDAC
Patient Centered Care (Planetree) Coordinator, VA NJ
Health Care System, Former Dietetic Internship Director,
VA NJ Health Care System, East Orange, NJ USA

Georg Harrer MD
Anesthesiologist Rudolfstiftung Community Hospital,
Vienna, Austria; FDM Instructor; Past President of
European Fascial Distortion Model Association,
Vienna, Austria

Philip F Harris MD, MSc, MB,ChB
Professor Emeritus of Anatomy, University of
Manchester, UK

Ulrich Hoheisel Dr. rer. nat.
Medical Faculty Mannheim, University of Heidelberg,
Heidelberg, Germany

Peter Huijing PhD
Professor Emeritus Functionality of the locomotor
system, Research Instituut MOVE, Faculteit
Bewegingswetenschappen, Vrije Universiteit,
Amsterdam, The Netherlands

Dominik Irnich PD, Dr. Med
Head of the Multidisciplinary Pain Centre, Department of
Anesthesiology, University of Munich, Germany

Heike Jäger PhD
Division of Neurophysiology – Fascia Research, University
of Ulm, Germany

Richard Jaspers PhD
Assistant Professor, Research Institute MOVE, Faculteit
Bewegingswetenschappen, Vrije Universiteit, Amsterdam,
The Netherlands

Yasuo Kawakami PhD
Professor, Faculty of Sport Sciences, Waseda University,
Tokyo, Japan

Hollis H. King DO, PhD
Professor & OPP Program Director
University of Wisconsin Department of Family Medicine
Madison, WI, USA

Werner Klingler MD, PhD
Division of Neurophysiology, Ulm University, Germany
Neuroanesthesia, Neurosurgical University Hospital,
Ulm-Guenzburg, Germany

Mick Kreulen MD, PhD
Plastic surgeon, Department of Plastic, European board
certified handsurgeon, Reconstructive and Hand Surgery,
Academic Medical Centre, University of Amsterdam, The
Netherlands

Helene M. Langevin MD
Professor, Department of Neurology, University of
Vermont, Burlington, USA

Stephen M. Levin MD, FACS
Director, Ezekiel Biomechanics Group, McLean, VA, USA

Karel Lewit MD, DSc
Professor of Medicine, Charles University, Prague,
Czech Republic

Torsten Liem DO, MSc Ost, MSc paed Ost
Vice-principal, German School of Osteopathy/Osteopathie
Schule Deutschland, Hamburg, Germany

Carolyn McMakin MA, DC
Certified Advanced Rolfer, Rolf Movement, Integration
Practitioner, Chicago, IL, USA

Danièle-Claude Martin PhD
Movement researcher and trainer, Munich, Germany

Heidi Massa BA, JD
Certified Advanced Rolfer, Rolf Movement, Integration
Practitioner, Chicago, IL, USA

Guido F Meert PT, DO
Academic principal and lecturer, Deutsches
Fortschungszentrum für Osteopathie (German
Osteopathic Skill Centre), Neutraubling-Regensburg,
Germany

Siegfried Mense MD
Senior Professor of Anatomy, Medical Faculty Mannheim,
University of Heidelberg, Germany
Divo Gitta Müller HP
Continuum Movement teacher, reg. naturopath, Director of Bodybliss, Munich, Germany.

Thomas Myers LMT
Director, Kinesis Incorporated, ME, USA

Ian L Naylor BPharm, MSc, PhD
Senior Lecturer, School of Pharmacy, University of Bradford, UK

Wolfgang Nebelung PD, Dr. Med
Arthroscopy Department – Sports Orthopaedics, Marienkrankenhaus Kaiserswerth, Düsseldorf, Germany

Robert J. Nee PT, MA, MSc
PhD Candidate, Division of Physiotherapy, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Australia

Arya Nielsen PhD
Professor of East Asian Medicine; Faculty Beth Israel Medical Center, New York, USA

James L. Oschman PhD
President, Nature’s Own Research Association, Dover, NH, USA

Cengizhan Ozturk MD, PhD
Professor, Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey

Serge Paolletti DO, MROF
Osteopath, Chambery, France; Postgraduate teacher, Osteopathic school, University of Saint Petersburg, St Petersburg, Russia

Andrzej Pilat PT
Director Myofascial Therapy School “Tupimek”, Madrid, Spain; Postgraduate Program Physiotherapy School ONCE, Universiad Autónoma, Madrid, Spain

Stephanie A Prendergast MPT
Physical Therapist, Co-owner, Pelvic Health and Rehabilitation Center, San Francisco, CA, USA

Peter P Purslow BSc, PhD
Professor of Food Science, University of Guelph, Guelph, Ontario, Canada

Frank Reichwein Dr. med.
Arthroscopy Department – Sports Orthopaedics, Marienkrankenhaus Kaiserswerth, Düsseldorf, Germany

Philipp Richter DO
Osteopath, Burg Reuland, Belgium

Elizabeth H Rummer MSPT
Physical Therapist, Co-owner, Pelvic Health and Rehabilitation Center, San Francisco, CA, USA

Robert Schleip PhD, MA
Director Fascia Research Project, Division of Neurophysiology, Ulm University, Germany; Research Director European Rolfing Association; Vice President Ida P. Rolf Research Foundation; Certified Rolfing & Feldenkrais Teacher

Axel Schultheis Dr. med.
Arthroscopy Department – Sports Orthopaedics, Marienkrankenhaus Kaiserswerth, Düsseldorf, Germany

Jane Simmonds PD, MA, BAppSc (Physio), BPE
Medical advisor HMSA and UK EDS support group Programme Lead – MSc Sport and Exercise Rehabilitation University of Hertfordshire, UK

Mark J C Smeluders MD, PhD
Research director, Department of Plastic, Reconstructive and Hand Surgery, Academic Medical Centre, University of Amsterdam, The Netherlands

Antonio Stecco MD
Physical Medicine and Rehabilitation specialist, University of Padova, Padua, Italy

Carla Stecco MD
Research Fellow and Orthopaedic surgeon, University of Padova, Padua, Italy

Toru Taguchi DSc
Assistant Professor of Neuroscience, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan

Jörg Thomas MD
Doctor of medicine, Department of Anesthesiology, University of Ulm, Ulm, Germany

Petra Valouchová PhD, PT
Lecturer, School of Medicine, Charles University, Prague, Czech Republic

Andry Vleeming PhD
Prof. at Department of Rehabilitation, Medical University Ghent Belgium, Department of Anatomy, Medical University of New England, Maine, USA

Nicol Voermans MD, PhD
Neurologist, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
Contributors

Ralf Vogt DO
Osteopath, Dietenheim, Germany

Jaap C van der Wal MD, PhD
Senior Lecturer in Anatomy and Embryology (retired), University of Maastricht, Maastricht, The Netherlands

Rainer Wander Dr. med.
President DGfAN [German Society for Acupuncture and Neural therapy], Elsterberg, Germany

Scott Wearing PhD
Research Program Leader (Injury Management), Centre of Excellence for Applied Sport Science Research, Queensland Academy of Sport, Brisbane, Australia
Associate Professor and Smart Futures Fellow, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia

Stefan Weinschenk Dr. med.
Ambulanz für Naturheilkunde und integrative Medizin, Universitätsfrauenklinik Heidelberg, Germany

Frank Willard PhD
Professor of Anatomy, University of New England, College of Osteopathic Medicine, Biddeford, USA

Alper Yaman PhD
PhD candidate, Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey

Can A Yucesoy PhD
Associate Professor of Biomedical Engineering, Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
Welcome to the world of fascia!

This book is the first comprehensive text in a new field in musculoskeletal therapy and research: the fascinating world of fascia. Fascia forms a continuous tensile network throughout the human body, covering and connecting every single organ, every muscle, and even every nerve or tiny muscle fiber. After several decades of severe neglect, this “Cinderella of orthopedic science” is developing its own identity within medical research. The number of research papers on fascia in peer-reviewed journals has shown a steady rise. The first International Fascia Research Congress, held at the Conference Center, Harvard Medical School in October 2007 was followed by a second in Amsterdam in 2009 and there will shortly be a third in Vancouver in 2012. Similar to the rapidly growing field of glia research in neurology, this underestimated contextual tissue, fascia, is being found to play an important role in health and pathology.

Hypotheses which accord myofascia a central role in the mechanisms of therapies have been advanced for some time in the fields of acupuncture, massage, structural integration, chiropractic and osteopathy. Practitioners in these disciplines, especially those which do not have the longevity of osteopathy or chiropractic, are generally unaware of the scientific basis for evaluating such hypotheses. Many practitioners are unaware of the sophistication of current laboratory research equipment and methods. Laboratory researchers, in turn, may be unaware of the clinical phenomena which suggest avenues of exploration. Thirty years ago the study of physical medicine and rehabilitation included muscle strengthening, anatomy, exercise physiology, and other aspects of therapeutic modalities. What was notably less present in the scientific and medical literature was how to understand and treat disorders of the fascia and connective tissues. Since then much additional information has been developed, particularly since 2005 (see Fig. 0.1).

The purpose of this book is to organize relevant information for scientists involved in the research of the body’s connective tissue matrix (fascia) as well as for professionals involved in the therapeutic manipulation of this body-wide structural fabric. While it grew out of materials presented at the First and the Second International Fascia Research Congresses in 2007 and 2009 (www.fasciacongress.org), it reflects the efforts of almost 100 scientists and clinicians.

Not only a packing organ

As every medical student knows and every doctor still remembers, fascia is introduced in anatomy dissection courses as the white packing stuff that one first needs to clean off, in order “to see something”. Similarly, anatomy books have been competing with each other, in how clean and orderly they present the locomotor system, by cutting away the whitish or semitranslucent fascia as completely and skillfully as possible. Students appreciate these appealing graphic simplifications, with shiny red muscles, each attaching to specific skeletal points. However, these simplified maps do not fully describe how the real body feels and behaves, be it in medical surgery or during therapeutic palpation.

To give an example: in real bodies, muscles hardly ever transmit their full force directly via tendons into the skeleton, as is usually suggested by our textbook drawings. They rather distribute a large portion of their contractile or tensile forces onto fascial sheets. These sheets transmit these forces to synergistic as well as antagonistic muscles. Thereby they stiffen not only the respective joint, but may even affect regions several joints further away. The simple questions discussed in musculoskeletal textbooks “which muscles” are participating in a particular movement thus become almost obsolete. Muscles are not functional units, no matter how common this misconception may be. Rather, most muscular movements are generated by many individual motor units, which are distributed over some portions of one muscle, plus other portions of other muscles. The tensional forces of these motor units are then transmitted to a complex network of fascial sheets, bags, and strings that convert them into the final body movement.
Similarly, it has been shown that fascial stiffness and elasticity play a significant role in many ballistic movements of the human body. First discovered by studies of the calf tissues of kangaroos, antelopes, and later by horses, modern ultrasound studies have revealed that fascial recoil plays in fact a similarly impressive role in many of our human movements. How far you can throw a stone, how high you can jump, how long you can run, depends not only on the contraction of your muscle fibers; it also depends to a large degree on how well the elastic recoil properties of your fascial network are supporting these movements.

If the architecture of our fascial network is indeed such an important factor in musculoskeletal behavior, why has this tissue been overlooked for such a long time? There are several answers to this question. The development of new imaging and research tools now allow us to study this tissue in vivo. Another reason is that this tissue resists the classical method of anatomical research: that of splitting something into separate parts that can be counted and named. You can reasonably estimate the number of bones or muscles; yet any attempt to count the number of fasciae in the body will be futile. The fascial body is one large networking organ, with many bags and hundreds of rope-like local densifications, and thousands of pockets within pockets, all interconnected by sturdy septa as well as by looser connective tissue layers.

What is fascia?

This varied nature of fascia is reflected in the many different definitions of which exact tissue types are included under the term “fascia”. The International Anatomical Nomenclature Committee (1983) confirmed the usage of previous nomenclature committees and used the term “fascia superficialis” for the loose layer of subcutaneous tissue lying superficial to the denser layer of “fascia profunda.” While most medical authors in English-speaking countries followed that terminology, it was not congruently adopted by authors in other countries. The nomenclature proposed by the Federative Committee on Anatomical Terminology (1998), therefore attempted to lead towards a more uniform international language (Wendell-Smith 1997). It suggested that authors should no longer use the term fascia for loose connective tissue layers, such as the former “superficial fascia”, and to apply it only for denser connective tissue aggregations. However, this attempt failed significantly (Huijing & Langevin 2009). Most English textbook authorities continued to use the term “superficial fascia” to describe subcutaneous tissues (Standring 2008). In addition an increasing number of non-English authors – following the common Anglo-Saxon trend in international medicine – have started to adopt the same terminology as these American or British colleagues.

Similarly there has been confusion on the question which of the three hierarchical muscular tissue bags – epi-, peri- and endomysium – could be included as fascia. While most authors would agree to consider as fascial tissues, muscular septi and the perimysium (which is often quite dense, particularly in tonic muscles) there is less consensus on the endomysial envelopes around single muscle fibers, based on their much looser density and higher quantity of collagen types III and IV. However, almost all authors emphasize the important continuity of these intramuscular connective tissues, and this continuity was shown extending even within the muscle cell (Purslow 2009). So where does fascia stop?

Another area, still to be resolved, are the visceral connective tissues. For some authors the term fascia is restricted to muscular connective tissues. Visceral connective tissues – no matter whether they are of loose composition like the major omentum or more ligamentous like the mediastinum – are often excluded. In contrast, more clinically oriented books have placed a lot of emphasis on the visceral fasciae (Paoletti 2006, Schwind 2006).

As valuable as these proposed anatomical distinctions within soft connective tissues are, their very detail may lead to unwitting exclusion of important tissue continuities which are only perceived on the larger scale. For example, the clinical significance
of the continuity of the fascia of the scalene muscles of the neck with the pericardium and mediastinum inside the thorax is often surprising in our discussions with orthopedic surgeons, although less so to osteopaths or general surgeons. Figure 0.2 shows another example of perceptual tissue exclusion, based on terminological distinction. Here one of the sturdiest portions of the iliotibial tract has been excluded from this important tissue band, since it did not fit the distinct nomenclature defined by the authors of this paper.

Based on this background a more encompassing definition of the term fascia was recently proposed as a basis for the first Fascia Research Congress (Findley & Schleip 2007) and was further developed (Huijing & Langevin 2009) for the following congresses. The term fascia here describes the 'soft tissue component of the connective tissue system that permeates the human body'. One could also describe these as fibrous collagenous tissues which are part of a bodywide tensional force transmission system. This view of an interconnected tensional network is partly inspired by the tensegrity concept, as described in Chapter 3.5. The complete fascial net then includes not only dense planar tissue sheets (like septa, joint capsules, aponeuroses, organ capsules, or retinacula), which may also be called ‘proper fascia’, but it also encompasses local densifications of this network in the form of ligaments and tendons. Additionally it includes softer collagenous connective tissues like the superficial fascia or the innermost intramuscular layer of the endomysium. The cutis, a derivative of the ectoderm, as well as cartilage and bones are not included as parts of the fascial tensional network. However, the term fascia now includes the dura mater, the periosteum, perineurium, the fibrous capsular layer of vertebral discs, organ capsules as well as bronchial connective tissue and the mesentery of the abdomen (Fig. 0.3).

This more encompassing terminology offers many important advantages for the field. Rather than having to draw most often arbitrary demarcation lines between joint capsules and their intimately involved ligaments and tendons (as well as interconnected

Fig. 0.2 • Example of a fascia dissection based on specific terminology • This dissection was used in an otherwise excellent treatise on the iliotibial tract (ITT). Following the proposal of the Federative Committee on Anatomical Terminology (1998) to distinguish between aponeuroses and fasciae, the authors chose to describe this tissue as an aponeurosis. Congruent with this decision, their dissection and illustration therefore excluded all tissue portions with a non aponeurotic character. Unfortunately this included one of the most dense and most important portions of the iliotibial tract: the connection to the lateral iliac crest, posterior of the anterior superior iliac spine. Notice the common thickening of the iliac crest at the former attachment of this ligamentous portion (located at a straight force transmission line from the knee over the greater trochanter), reflecting the very strong pull of this tissue portion on the pelvis. (TFL: tensor fascia lata.) Illustration taken with permission from Benjamin et al 2008)

Fig. 0.3 • Different connective tissues considered here as fascial tissues • Fascial tissues differ in terms of their density and directional alignment of collagen fibers. For example, superficial fascia is characterized by a loose density and a mostly multidirectional or irregular fiber alignment; whereas in the denser tendons or ligaments the fibers are mostly unidirectional. Note that the intramuscular fasciae – septi, perimysium and endomysium – may express varying degrees of directionality and density. The same is true – although to a much larger degree – for the visceral fasciae (including soft tissues like the omentum majus and tougher sheets like the pericardium). Depending on local loading history, proper fasciae can express a two-directional or multidirectional arrangement. Not shown here are retinaculae and joint capsules, whose local properties may vary between those of ligaments, aponeuroses and proper fasciae.
aponeuroses, retinacula and intramuscular fasciae), fascial tissues are seen as one interconnected tensile network that adapts its fiber arrangement and density according to local tensional demands. This terminology fits nicely to the Latin root of the term “fascia” (bundle, strap, bandage, binding together). It is also synonymous with the non-professional’s understanding of the term “connective tissue”. “Connective tissue research” is too broad a term, as this includes bones, cartilage and even blood or lymph, all of which are derivatives of the embryologic mesenchyme. In addition, the contemporary field of ‘connective tissue research’ has shifted its primary focus to tiny molecular dynamics from the macroscopic considerations of several decades ago. The newly forming field of fascia research requires both macroscopic and microscopic investigations. This text has undertaken the task of serving both areas. Even if sometimes microscopic details of collagenous tissues are explored, an effort will be made to always relate these findings to the body as a whole.

While we see great advantages in our wider definition of fascial tissues, we acknowledge that more traditionally oriented authors will continue to restrict the term fascia to dense planar layers of “irregular” connective tissues, in distinction from more regular oriented tissues like aponeuroses or ligaments. In some areas such a distinction is indeed possible and may be clinically useful (e.g. at the fasciae and aponeuroses of the lumbar region). We therefore suggest including twelve additional specifying terms wherever possible, into the detailed description of a fascial tissue. These specifying terms were proposed by Huijing & Langevin (2009): dense connective tissue, areolar connective tissue, superficial fascia, deep fascia, intermuscular septa, interosseal membrane, periost, neurovascular tract, epimysium, intra- and extramuscular aponeurosis, endomysium. However, we also note that many important areas of the body are characterized by gradual transitions between such morphological categories, and a more geometrical description of local collagen architecture (in terms of dominant fiber directions, tissue thickness and density) may then be more useful to understanding specific tissue properties (see Fig. 0.2).

This textbook, as have the fascia congresses, has taken the difficult role of being oriented toward both the scientist and the clinician. Material presented spans anatomy and physiology of fascia in Part 1, through clinical conditions and therapies in Part 2, to recently developed research techniques in Part 3. We have pointed out the definitional struggles the researcher faces surrounding fascia: Which tissue? What fiber directions? What is connected to what? These research tools will allow the extension of this debate to more clinical areas as well, to help define which tissues are affected and what directions forces are applied in the clinical therapies. It is our hope that clinicians and scientists, both together and separately, will rise to these challenges to advance our basic understanding and our clinical treatment of fascia.

References